MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-or Structured version   Unicode version

Theorem ex-or 21721
Description: Example for df-or 360. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
ex-or  |-  ( 2  =  3  \/  4  =  4 )

Proof of Theorem ex-or
StepHypRef Expression
1 eqid 2435 . 2  |-  4  =  4
21olci 381 1  |-  ( 2  =  3  \/  4  =  4 )
Colors of variables: wff set class
Syntax hints:    \/ wo 358    = wceq 1652   2c2 10041   3c3 10042   4c4 10043
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-cleq 2428
  Copyright terms: Public domain W3C validator