MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-un Unicode version

Theorem ex-un 20923
Description: Example for df-un 3233. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-un  |-  ( { 1 ,  3 }  u.  { 1 ,  8 } )  =  { 1 ,  3 ,  8 }

Proof of Theorem ex-un
StepHypRef Expression
1 unass 3408 . . 3  |-  ( ( { 1 ,  3 }  u.  { 1 } )  u.  {
8 } )  =  ( { 1 ,  3 }  u.  ( { 1 }  u.  { 8 } ) )
2 snsspr1 3843 . . . . 5  |-  { 1 }  C_  { 1 ,  3 }
3 ssequn2 3424 . . . . 5  |-  ( { 1 }  C_  { 1 ,  3 }  <->  ( {
1 ,  3 }  u.  { 1 } )  =  { 1 ,  3 } )
42, 3mpbi 199 . . . 4  |-  ( { 1 ,  3 }  u.  { 1 } )  =  { 1 ,  3 }
54uneq1i 3401 . . 3  |-  ( ( { 1 ,  3 }  u.  { 1 } )  u.  {
8 } )  =  ( { 1 ,  3 }  u.  {
8 } )
61, 5eqtr3i 2380 . 2  |-  ( { 1 ,  3 }  u.  ( { 1 }  u.  { 8 } ) )  =  ( { 1 ,  3 }  u.  {
8 } )
7 df-pr 3723 . . 3  |-  { 1 ,  8 }  =  ( { 1 }  u.  { 8 } )
87uneq2i 3402 . 2  |-  ( { 1 ,  3 }  u.  { 1 ,  8 } )  =  ( { 1 ,  3 }  u.  ( { 1 }  u.  { 8 } ) )
9 df-tp 3724 . 2  |-  { 1 ,  3 ,  8 }  =  ( { 1 ,  3 }  u.  { 8 } )
106, 8, 93eqtr4i 2388 1  |-  ( { 1 ,  3 }  u.  { 1 ,  8 } )  =  { 1 ,  3 ,  8 }
Colors of variables: wff set class
Syntax hints:    = wceq 1642    u. cun 3226    C_ wss 3228   {csn 3716   {cpr 3717   {ctp 3718   1c1 8828   3c3 9886   8c8 9891
This theorem is referenced by:  ex-uni  20925
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-v 2866  df-un 3233  df-in 3235  df-ss 3242  df-pr 3723  df-tp 3724
  Copyright terms: Public domain W3C validator