MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-un Structured version   Unicode version

Theorem ex-un 21732
Description: Example for df-un 3325. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-un  |-  ( { 1 ,  3 }  u.  { 1 ,  8 } )  =  { 1 ,  3 ,  8 }

Proof of Theorem ex-un
StepHypRef Expression
1 unass 3504 . . 3  |-  ( ( { 1 ,  3 }  u.  { 1 } )  u.  {
8 } )  =  ( { 1 ,  3 }  u.  ( { 1 }  u.  { 8 } ) )
2 snsspr1 3947 . . . . 5  |-  { 1 }  C_  { 1 ,  3 }
3 ssequn2 3520 . . . . 5  |-  ( { 1 }  C_  { 1 ,  3 }  <->  ( {
1 ,  3 }  u.  { 1 } )  =  { 1 ,  3 } )
42, 3mpbi 200 . . . 4  |-  ( { 1 ,  3 }  u.  { 1 } )  =  { 1 ,  3 }
54uneq1i 3497 . . 3  |-  ( ( { 1 ,  3 }  u.  { 1 } )  u.  {
8 } )  =  ( { 1 ,  3 }  u.  {
8 } )
61, 5eqtr3i 2458 . 2  |-  ( { 1 ,  3 }  u.  ( { 1 }  u.  { 8 } ) )  =  ( { 1 ,  3 }  u.  {
8 } )
7 df-pr 3821 . . 3  |-  { 1 ,  8 }  =  ( { 1 }  u.  { 8 } )
87uneq2i 3498 . 2  |-  ( { 1 ,  3 }  u.  { 1 ,  8 } )  =  ( { 1 ,  3 }  u.  ( { 1 }  u.  { 8 } ) )
9 df-tp 3822 . 2  |-  { 1 ,  3 ,  8 }  =  ( { 1 ,  3 }  u.  { 8 } )
106, 8, 93eqtr4i 2466 1  |-  ( { 1 ,  3 }  u.  { 1 ,  8 } )  =  { 1 ,  3 ,  8 }
Colors of variables: wff set class
Syntax hints:    = wceq 1652    u. cun 3318    C_ wss 3320   {csn 3814   {cpr 3815   {ctp 3816   1c1 8991   3c3 10050   8c8 10055
This theorem is referenced by:  ex-uni  21734
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2958  df-un 3325  df-in 3327  df-ss 3334  df-pr 3821  df-tp 3822
  Copyright terms: Public domain W3C validator