Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exidcl Unicode version

Theorem exidcl 25933
Description: Closure of the binary operation of a magma with identity. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypothesis
Ref Expression
exidcl.1  |-  X  =  ran  G
Assertion
Ref Expression
exidcl  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X )

Proof of Theorem exidcl
StepHypRef Expression
1 exidcl.1 . . . . . . . 8  |-  X  =  ran  G
2 rngopid 20950 . . . . . . . 8  |-  ( G  e.  ( Magma  i^i  ExId  )  ->  ran  G  =  dom  dom  G )
31, 2syl5eq 2302 . . . . . . 7  |-  ( G  e.  ( Magma  i^i  ExId  )  ->  X  =  dom  dom 
G )
43eleq2d 2325 . . . . . 6  |-  ( G  e.  ( Magma  i^i  ExId  )  ->  ( A  e.  X  <->  A  e.  dom  dom 
G ) )
53eleq2d 2325 . . . . . 6  |-  ( G  e.  ( Magma  i^i  ExId  )  ->  ( B  e.  X  <->  B  e.  dom  dom 
G ) )
64, 5anbi12d 694 . . . . 5  |-  ( G  e.  ( Magma  i^i  ExId  )  ->  ( ( A  e.  X  /\  B  e.  X )  <->  ( A  e.  dom  dom  G  /\  B  e.  dom  dom  G
) ) )
76pm5.32i 621 . . . 4  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  ( A  e.  X  /\  B  e.  X )
)  <->  ( G  e.  ( Magma  i^i  ExId  )  /\  ( A  e.  dom  dom 
G  /\  B  e.  dom  dom  G ) ) )
8 inss1 3364 . . . . . . 7  |-  ( Magma  i^i 
ExId  )  C_  Magma
98sseli 3151 . . . . . 6  |-  ( G  e.  ( Magma  i^i  ExId  )  ->  G  e.  Magma )
10 eqid 2258 . . . . . . 7  |-  dom  dom  G  =  dom  dom  G
1110clmgm 20948 . . . . . 6  |-  ( ( G  e.  Magma  /\  A  e.  dom  dom  G  /\  B  e.  dom  dom  G
)  ->  ( A G B )  e.  dom  dom 
G )
129, 11syl3an1 1220 . . . . 5  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  A  e. 
dom  dom  G  /\  B  e.  dom  dom  G )  ->  ( A G B )  e.  dom  dom  G )
13123expb 1157 . . . 4  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  ( A  e.  dom  dom  G  /\  B  e.  dom  dom 
G ) )  -> 
( A G B )  e.  dom  dom  G )
147, 13sylbi 189 . . 3  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( A G B )  e.  dom  dom 
G )
15143impb 1152 . 2  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  e. 
dom  dom  G )
1633ad2ant1 981 . 2  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  A  e.  X  /\  B  e.  X )  ->  X  =  dom  dom  G )
1715, 16eleqtrrd 2335 1  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    i^i cin 3126   dom cdm 4661   ran crn 4662  (class class class)co 5792    ExId cexid 20941   Magmacmagm 20945
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-fo 4687  df-fv 4689  df-ov 5795  df-exid 20942  df-mgm 20946
  Copyright terms: Public domain W3C validator