Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exinst01 Unicode version

Theorem exinst01 28435
 Description: Existential Instantiation. Virtual Deduction rule corresponding to a special case of the Natural Deduction Sequent Calculus rule called Rule C in [Margaris] p. 79 and E in Table 1 on page 4 of the paper "Extracting information from intermediate T-systems" (2000) presented at IMLA99 by Mauro Ferrari, Camillo Fiorentini, and Pierangelo Miglioli. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
exinst01.1
exinst01.2
exinst01.3
exinst01.4
Assertion
Ref Expression
exinst01

Proof of Theorem exinst01
StepHypRef Expression
1 exinst01.1 . . 3
2 exinst01.2 . . . 4
32dfvd2i 28386 . . 3
4 exinst01.3 . . 3
5 exinst01.4 . . 3
61, 3, 4, 5eexinst01 28321 . 2
76dfvd1ir 28373 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1546  wex 1547  wvd1 28369  wvd2 28378 This theorem is referenced by:  vk15.4jVD  28735 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-11 1757 This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1548  df-nf 1551  df-vd1 28370  df-vd2 28379
 Copyright terms: Public domain W3C validator