MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exintr Unicode version

Theorem exintr 1616
Description: Introduce a conjunct in the scope of an existential quantifier. (Contributed by NM, 11-Aug-1993.)
Assertion
Ref Expression
exintr  |-  ( A. x ( ph  ->  ps )  ->  ( E. x ph  ->  E. x
( ph  /\  ps )
) )

Proof of Theorem exintr
StepHypRef Expression
1 exintrbi 1615 . 2  |-  ( A. x ( ph  ->  ps )  ->  ( E. x ph  <->  E. x ( ph  /\ 
ps ) ) )
21biimpd 200 1  |-  ( A. x ( ph  ->  ps )  ->  ( E. x ph  ->  E. x
( ph  /\  ps )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360   A.wal 1532   E.wex 1537
This theorem is referenced by:  ceqsex  2797  r19.2z  3518  pwpw0  3737  pwsnALT  3796  ceqsex3OLD  26093  pm10.55  26931  bnj1023  27861  bnj1109  27867
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-gen 1536
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1538
  Copyright terms: Public domain W3C validator