MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exlimdd Structured version   Unicode version

Theorem exlimdd 1916
Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypotheses
Ref Expression
exlimdd.1  |-  F/ x ph
exlimdd.2  |-  F/ x ch
exlimdd.3  |-  ( ph  ->  E. x ps )
exlimdd.4  |-  ( (
ph  /\  ps )  ->  ch )
Assertion
Ref Expression
exlimdd  |-  ( ph  ->  ch )

Proof of Theorem exlimdd
StepHypRef Expression
1 exlimdd.3 . 2  |-  ( ph  ->  E. x ps )
2 exlimdd.1 . . 3  |-  F/ x ph
3 exlimdd.2 . . 3  |-  F/ x ch
4 exlimdd.4 . . . 4  |-  ( (
ph  /\  ps )  ->  ch )
54ex 425 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
62, 3, 5exlimd 1827 . 2  |-  ( ph  ->  ( E. x ps 
->  ch ) )
71, 6mpd 15 1  |-  ( ph  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360   E.wex 1551   F/wnf 1554
This theorem is referenced by:  fvmptdf  5852  ovmpt2df  6241  ex-natded9.26  21765  stoweidlem43  27880  stoweidlem44  27881  stoweidlem54  27891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-6 1747  ax-11 1764
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-nf 1555
  Copyright terms: Public domain W3C validator