Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  exlimdd Structured version   Unicode version

Theorem exlimdd 1916
 Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypotheses
Ref Expression
exlimdd.1
exlimdd.2
exlimdd.3
exlimdd.4
Assertion
Ref Expression
exlimdd

Proof of Theorem exlimdd
StepHypRef Expression
1 exlimdd.3 . 2
2 exlimdd.1 . . 3
3 exlimdd.2 . . 3
4 exlimdd.4 . . . 4
54ex 425 . . 3
62, 3, 5exlimd 1827 . 2
71, 6mpd 15 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360  wex 1551  wnf 1554 This theorem is referenced by:  fvmptdf  5852  ovmpt2df  6241  ex-natded9.26  21765  stoweidlem43  27880  stoweidlem44  27881  stoweidlem54  27891 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-6 1747  ax-11 1764 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-nf 1555
 Copyright terms: Public domain W3C validator