MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expadd Unicode version

Theorem expadd 11111
Description: Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by NM, 30-Nov-2004.)
Assertion
Ref Expression
expadd  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) )

Proof of Theorem expadd
StepHypRef Expression
1 oveq2 5800 . . . . . . 7  |-  ( j  =  0  ->  ( M  +  j )  =  ( M  + 
0 ) )
21oveq2d 5808 . . . . . 6  |-  ( j  =  0  ->  ( A ^ ( M  +  j ) )  =  ( A ^ ( M  +  0 ) ) )
3 oveq2 5800 . . . . . . 7  |-  ( j  =  0  ->  ( A ^ j )  =  ( A ^ 0 ) )
43oveq2d 5808 . . . . . 6  |-  ( j  =  0  ->  (
( A ^ M
)  x.  ( A ^ j ) )  =  ( ( A ^ M )  x.  ( A ^ 0 ) ) )
52, 4eqeq12d 2272 . . . . 5  |-  ( j  =  0  ->  (
( A ^ ( M  +  j )
)  =  ( ( A ^ M )  x.  ( A ^
j ) )  <->  ( A ^ ( M  + 
0 ) )  =  ( ( A ^ M )  x.  ( A ^ 0 ) ) ) )
65imbi2d 309 . . . 4  |-  ( j  =  0  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  +  j ) )  =  ( ( A ^ M )  x.  ( A ^ j ) ) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  + 
0 ) )  =  ( ( A ^ M )  x.  ( A ^ 0 ) ) ) ) )
7 oveq2 5800 . . . . . . 7  |-  ( j  =  k  ->  ( M  +  j )  =  ( M  +  k ) )
87oveq2d 5808 . . . . . 6  |-  ( j  =  k  ->  ( A ^ ( M  +  j ) )  =  ( A ^ ( M  +  k )
) )
9 oveq2 5800 . . . . . . 7  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
109oveq2d 5808 . . . . . 6  |-  ( j  =  k  ->  (
( A ^ M
)  x.  ( A ^ j ) )  =  ( ( A ^ M )  x.  ( A ^ k
) ) )
118, 10eqeq12d 2272 . . . . 5  |-  ( j  =  k  ->  (
( A ^ ( M  +  j )
)  =  ( ( A ^ M )  x.  ( A ^
j ) )  <->  ( A ^ ( M  +  k ) )  =  ( ( A ^ M )  x.  ( A ^ k ) ) ) )
1211imbi2d 309 . . . 4  |-  ( j  =  k  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  +  j ) )  =  ( ( A ^ M )  x.  ( A ^ j ) ) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  k ) )  =  ( ( A ^ M )  x.  ( A ^ k ) ) ) ) )
13 oveq2 5800 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( M  +  j )  =  ( M  +  ( k  +  1 ) ) )
1413oveq2d 5808 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( A ^ ( M  +  j ) )  =  ( A ^ ( M  +  ( k  +  1 ) ) ) )
15 oveq2 5800 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
1615oveq2d 5808 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ M
)  x.  ( A ^ j ) )  =  ( ( A ^ M )  x.  ( A ^ (
k  +  1 ) ) ) )
1714, 16eqeq12d 2272 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ ( M  +  j )
)  =  ( ( A ^ M )  x.  ( A ^
j ) )  <->  ( A ^ ( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M )  x.  ( A ^ ( k  +  1 ) ) ) ) )
1817imbi2d 309 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  +  j ) )  =  ( ( A ^ M )  x.  ( A ^ j ) ) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M )  x.  ( A ^ ( k  +  1 ) ) ) ) ) )
19 oveq2 5800 . . . . . . 7  |-  ( j  =  N  ->  ( M  +  j )  =  ( M  +  N ) )
2019oveq2d 5808 . . . . . 6  |-  ( j  =  N  ->  ( A ^ ( M  +  j ) )  =  ( A ^ ( M  +  N )
) )
21 oveq2 5800 . . . . . . 7  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
2221oveq2d 5808 . . . . . 6  |-  ( j  =  N  ->  (
( A ^ M
)  x.  ( A ^ j ) )  =  ( ( A ^ M )  x.  ( A ^ N
) ) )
2320, 22eqeq12d 2272 . . . . 5  |-  ( j  =  N  ->  (
( A ^ ( M  +  j )
)  =  ( ( A ^ M )  x.  ( A ^
j ) )  <->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
2423imbi2d 309 . . . 4  |-  ( j  =  N  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  +  j ) )  =  ( ( A ^ M )  x.  ( A ^ j ) ) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) ) )
25 nn0cn 9943 . . . . . . . . 9  |-  ( M  e.  NN0  ->  M  e.  CC )
2625addid1d 8980 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( M  +  0 )  =  M )
2726adantl 454 . . . . . . 7  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( M  +  0 )  =  M )
2827oveq2d 5808 . . . . . 6  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  +  0 ) )  =  ( A ^ M ) )
29 expcl 11088 . . . . . . 7  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ M
)  e.  CC )
3029mulid1d 8820 . . . . . 6  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( ( A ^ M )  x.  1 )  =  ( A ^ M ) )
3128, 30eqtr4d 2293 . . . . 5  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  +  0 ) )  =  ( ( A ^ M )  x.  1 ) )
32 exp0 11075 . . . . . . 7  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
3332adantr 453 . . . . . 6  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ 0 )  =  1 )
3433oveq2d 5808 . . . . 5  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( ( A ^ M )  x.  ( A ^ 0 ) )  =  ( ( A ^ M )  x.  1 ) )
3531, 34eqtr4d 2293 . . . 4  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  +  0 ) )  =  ( ( A ^ M )  x.  ( A ^
0 ) ) )
36 oveq1 5799 . . . . . . 7  |-  ( ( A ^ ( M  +  k ) )  =  ( ( A ^ M )  x.  ( A ^ k
) )  ->  (
( A ^ ( M  +  k )
)  x.  A )  =  ( ( ( A ^ M )  x.  ( A ^
k ) )  x.  A ) )
37 nn0cn 9943 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  k  e.  CC )
38 ax-1cn 8763 . . . . . . . . . . . . 13  |-  1  e.  CC
39 addass 8792 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  (
( M  +  k )  +  1 )  =  ( M  +  ( k  +  1 ) ) )
4038, 39mp3an3 1271 . . . . . . . . . . . 12  |-  ( ( M  e.  CC  /\  k  e.  CC )  ->  ( ( M  +  k )  +  1 )  =  ( M  +  ( k  +  1 ) ) )
4125, 37, 40syl2an 465 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ( M  +  k )  +  1 )  =  ( M  +  ( k  +  1 ) ) )
4241adantll 697 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( M  +  k )  +  1 )  =  ( M  +  ( k  +  1 ) ) )
4342oveq2d 5808 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( ( M  +  k )  +  1 ) )  =  ( A ^ ( M  +  ( k  +  1 ) ) ) )
44 simpll 733 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  A  e.  CC )
45 nn0addcl 9967 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  +  k )  e.  NN0 )
4645adantll 697 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( M  +  k )  e.  NN0 )
47 expp1 11077 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( M  +  k
)  e.  NN0 )  ->  ( A ^ (
( M  +  k )  +  1 ) )  =  ( ( A ^ ( M  +  k ) )  x.  A ) )
4844, 46, 47syl2anc 645 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( ( M  +  k )  +  1 ) )  =  ( ( A ^ ( M  +  k )
)  x.  A ) )
4943, 48eqtr3d 2292 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( M  +  ( k  +  1 ) ) )  =  ( ( A ^ ( M  +  k )
)  x.  A ) )
50 expp1 11077 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
5150adantlr 698 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( k  +  1 ) )  =  ( ( A ^ k
)  x.  A ) )
5251oveq2d 5808 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ M )  x.  ( A ^ (
k  +  1 ) ) )  =  ( ( A ^ M
)  x.  ( ( A ^ k )  x.  A ) ) )
5329adantr 453 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^ M )  e.  CC )
54 expcl 11088 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
5554adantlr 698 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
k )  e.  CC )
5653, 55, 44mulassd 8826 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( ( A ^ M )  x.  ( A ^
k ) )  x.  A )  =  ( ( A ^ M
)  x.  ( ( A ^ k )  x.  A ) ) )
5752, 56eqtr4d 2293 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ M )  x.  ( A ^ (
k  +  1 ) ) )  =  ( ( ( A ^ M )  x.  ( A ^ k ) )  x.  A ) )
5849, 57eqeq12d 2272 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ ( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M )  x.  ( A ^ ( k  +  1 ) ) )  <-> 
( ( A ^
( M  +  k ) )  x.  A
)  =  ( ( ( A ^ M
)  x.  ( A ^ k ) )  x.  A ) ) )
5936, 58syl5ibr 214 . . . . . 6  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ ( M  +  k ) )  =  ( ( A ^ M )  x.  ( A ^ k ) )  ->  ( A ^
( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M
)  x.  ( A ^ ( k  +  1 ) ) ) ) )
6059expcom 426 . . . . 5  |-  ( k  e.  NN0  ->  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( ( A ^
( M  +  k ) )  =  ( ( A ^ M
)  x.  ( A ^ k ) )  ->  ( A ^
( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M
)  x.  ( A ^ ( k  +  1 ) ) ) ) ) )
6160a2d 25 . . . 4  |-  ( k  e.  NN0  ->  ( ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  k )
)  =  ( ( A ^ M )  x.  ( A ^
k ) ) )  ->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  ( k  +  1 ) ) )  =  ( ( A ^ M )  x.  ( A ^ ( k  +  1 ) ) ) ) ) )
626, 12, 18, 24, 35, 61nn0ind 10076 . . 3  |-  ( N  e.  NN0  ->  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
6362exp3acom3r 1366 . 2  |-  ( A  e.  CC  ->  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) ) )
64633imp 1150 1  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621  (class class class)co 5792   CCcc 8703   0cc0 8705   1c1 8706    + caddc 8708    x. cmul 8710   NN0cn0 9933   ^cexp 11071
This theorem is referenced by:  expaddzlem  11112  expaddz  11113  expmul  11114  i4  11172  expaddd  11214  faclbnd4lem1  11273  ef01bndlem  12427  modxai  13046  numexp2x  13057  expmhm  16412  quart1lem  20114  log2ublem2  20206  bposlem8  20493  fsumcube  24171
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-n 9715  df-n0 9934  df-z 9993  df-uz 10199  df-seq 11014  df-exp 11072
  Copyright terms: Public domain W3C validator