MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expaddz Unicode version

Theorem expaddz 11148
Description: Sum of exponents law for integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expaddz  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) )

Proof of Theorem expaddz
StepHypRef Expression
1 elznn0nn 10039 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
2 elznn0nn 10039 . . . 4  |-  ( M  e.  ZZ  <->  ( M  e.  NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )
3 expadd 11146 . . . . . . . 8  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) )
433expia 1153 . . . . . . 7  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( N  e.  NN0  ->  ( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
54adantlr 695 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0 )  ->  ( N  e. 
NN0  ->  ( A ^
( M  +  N
) )  =  ( ( A ^ M
)  x.  ( A ^ N ) ) ) )
6 expaddzlem 11147 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) )
763expia 1153 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN ) )  -> 
( N  e.  NN0  ->  ( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
85, 7jaodan 760 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e. 
NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )  ->  ( N  e. 
NN0  ->  ( A ^
( M  +  N
) )  =  ( ( A ^ M
)  x.  ( A ^ N ) ) ) )
9 expaddzlem 11147 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  ( A ^ ( N  +  M ) )  =  ( ( A ^ N )  x.  ( A ^ M ) ) )
10 simp3 957 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  M  e.  NN0 )
1110nn0cnd 10022 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  M  e.  CC )
12 simp2l 981 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  N  e.  RR )
1312recnd 8863 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  N  e.  CC )
1411, 13addcomd 9016 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  ( M  +  N )  =  ( N  +  M ) )
1514oveq2d 5876 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( A ^ ( N  +  M )
) )
16 simp1l 979 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  A  e.  CC )
17 expcl 11123 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ M
)  e.  CC )
1816, 10, 17syl2anc 642 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  ( A ^ M )  e.  CC )
19 simp1r 980 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  A  =/=  0 )
2013negnegd 9150 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  -u -u N  =  N )
21 simp2r 982 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  -u N  e.  NN )
2221nnnn0d 10020 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  -u N  e.  NN0 )
23 nn0negz 10059 . . . . . . . . . . . . 13  |-  ( -u N  e.  NN0  ->  -u -u N  e.  ZZ )
2422, 23syl 15 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  -u -u N  e.  ZZ )
2520, 24eqeltrrd 2360 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  N  e.  ZZ )
26 expclz 11130 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  N  e.  ZZ )  ->  ( A ^ N )  e.  CC )
2716, 19, 25, 26syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  ( A ^ N )  e.  CC )
2818, 27mulcomd 8858 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  (
( A ^ M
)  x.  ( A ^ N ) )  =  ( ( A ^ N )  x.  ( A ^ M
) ) )
299, 15, 283eqtr4d 2327 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) )
30293expia 1153 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( M  e.  NN0  ->  ( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
3130impancom 427 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0 )  ->  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
32 simp2l 981 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  M  e.  RR )
3332recnd 8863 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  M  e.  CC )
34 simp3l 983 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  RR )
3534recnd 8863 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  CC )
3633, 35negdid 9172 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u ( M  +  N
)  =  ( -u M  +  -u N ) )
3736oveq2d 5876 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u ( M  +  N )
)  =  ( A ^ ( -u M  +  -u N ) ) )
38 simp1l 979 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A  e.  CC )
39 simp2r 982 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u M  e.  NN )
4039nnnn0d 10020 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u M  e.  NN0 )
41 simp3r 984 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN )
4241nnnn0d 10020 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN0 )
43 expadd 11146 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  -u M  e.  NN0  /\  -u N  e.  NN0 )  ->  ( A ^ ( -u M  +  -u N
) )  =  ( ( A ^ -u M
)  x.  ( A ^ -u N ) ) )
4438, 40, 42, 43syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( -u M  +  -u N
) )  =  ( ( A ^ -u M
)  x.  ( A ^ -u N ) ) )
4537, 44eqtrd 2317 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u ( M  +  N )
)  =  ( ( A ^ -u M
)  x.  ( A ^ -u N ) ) )
4645oveq2d 5876 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  ( A ^ -u ( M  +  N ) ) )  =  ( 1  /  ( ( A ^ -u M )  x.  ( A ^ -u N ) ) ) )
47 1t1e1 9872 . . . . . . . . . . 11  |-  ( 1  x.  1 )  =  1
4847oveq1i 5870 . . . . . . . . . 10  |-  ( ( 1  x.  1 )  /  ( ( A ^ -u M )  x.  ( A ^ -u N ) ) )  =  ( 1  / 
( ( A ^ -u M )  x.  ( A ^ -u N ) ) )
4946, 48syl6eqr 2335 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  ( A ^ -u ( M  +  N ) ) )  =  ( ( 1  x.  1 )  /  ( ( A ^ -u M )  x.  ( A ^ -u N ) ) ) )
50 expcl 11123 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  -u M  e.  NN0 )  ->  ( A ^ -u M
)  e.  CC )
5138, 40, 50syl2anc 642 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u M
)  e.  CC )
52 simp1r 980 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A  =/=  0 )
5340nn0zd 10117 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u M  e.  ZZ )
54 expne0i 11136 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  -u M  e.  ZZ )  ->  ( A ^ -u M )  =/=  0 )
5538, 52, 53, 54syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u M
)  =/=  0 )
56 expcl 11123 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  -u N  e.  NN0 )  ->  ( A ^ -u N
)  e.  CC )
5738, 42, 56syl2anc 642 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u N
)  e.  CC )
5842nn0zd 10117 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  ZZ )
59 expne0i 11136 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  -u N  e.  ZZ )  ->  ( A ^ -u N )  =/=  0 )
6038, 52, 58, 59syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u N
)  =/=  0 )
61 ax-1cn 8797 . . . . . . . . . . 11  |-  1  e.  CC
62 divmuldiv 9462 . . . . . . . . . . 11  |-  ( ( ( 1  e.  CC  /\  1  e.  CC )  /\  ( ( ( A ^ -u M
)  e.  CC  /\  ( A ^ -u M
)  =/=  0 )  /\  ( ( A ^ -u N )  e.  CC  /\  ( A ^ -u N )  =/=  0 ) ) )  ->  ( (
1  /  ( A ^ -u M ) )  x.  ( 1  /  ( A ^ -u N ) ) )  =  ( ( 1  x.  1 )  / 
( ( A ^ -u M )  x.  ( A ^ -u N ) ) ) )
6361, 61, 62mpanl12 663 . . . . . . . . . 10  |-  ( ( ( ( A ^ -u M )  e.  CC  /\  ( A ^ -u M
)  =/=  0 )  /\  ( ( A ^ -u N )  e.  CC  /\  ( A ^ -u N )  =/=  0 ) )  ->  ( ( 1  /  ( A ^ -u M ) )  x.  ( 1  /  ( A ^ -u N ) ) )  =  ( ( 1  x.  1 )  /  ( ( A ^ -u M
)  x.  ( A ^ -u N ) ) ) )
6451, 55, 57, 60, 63syl22anc 1183 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( 1  / 
( A ^ -u M
) )  x.  (
1  /  ( A ^ -u N ) ) )  =  ( ( 1  x.  1 )  /  ( ( A ^ -u M
)  x.  ( A ^ -u N ) ) ) )
6549, 64eqtr4d 2320 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  ( A ^ -u ( M  +  N ) ) )  =  ( ( 1  /  ( A ^ -u M ) )  x.  ( 1  /  ( A ^ -u N ) ) ) )
6633, 35addcld 8856 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( M  +  N
)  e.  CC )
6740, 42nn0addcld 10024 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( -u M  +  -u N )  e.  NN0 )
6836, 67eqeltrd 2359 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u ( M  +  N
)  e.  NN0 )
69 expneg2 11114 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( M  +  N
)  e.  CC  /\  -u ( M  +  N
)  e.  NN0 )  ->  ( A ^ ( M  +  N )
)  =  ( 1  /  ( A ^ -u ( M  +  N
) ) ) )
7038, 66, 68, 69syl3anc 1182 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  +  N )
)  =  ( 1  /  ( A ^ -u ( M  +  N
) ) ) )
71 expneg2 11114 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  M  e.  CC  /\  -u M  e.  NN0 )  ->  ( A ^ M )  =  ( 1  /  ( A ^ -u M ) ) )
7238, 33, 40, 71syl3anc 1182 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ M
)  =  ( 1  /  ( A ^ -u M ) ) )
73 expneg2 11114 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  N  e.  CC  /\  -u N  e.  NN0 )  ->  ( A ^ N )  =  ( 1  /  ( A ^ -u N ) ) )
7438, 35, 42, 73syl3anc 1182 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ N
)  =  ( 1  /  ( A ^ -u N ) ) )
7572, 74oveq12d 5878 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( A ^ M )  x.  ( A ^ N ) )  =  ( ( 1  /  ( A ^ -u M ) )  x.  ( 1  /  ( A ^ -u N ) ) ) )
7665, 70, 753eqtr4d 2327 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) )
77763expia 1153 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN ) )  -> 
( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
7831, 77jaodan 760 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e. 
NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )  ->  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
798, 78jaod 369 . . . 4  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e. 
NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )  ->  ( ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
802, 79sylan2b 461 . . 3  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  ZZ )  ->  ( ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
811, 80syl5bi 208 . 2  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  ZZ )  ->  ( N  e.  ZZ  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
8281impr 602 1  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686    =/= wne 2448  (class class class)co 5860   CCcc 8737   RRcr 8738   0cc0 8739   1c1 8740    + caddc 8742    x. cmul 8744   -ucneg 9040    / cdiv 9425   NNcn 9748   NN0cn0 9967   ZZcz 10026   ^cexp 11106
This theorem is referenced by:  expsub  11151  expp1z  11152  iseraltlem2  12157  iseraltlem3  12158  pcaddlem  12938  expghm  16452  aaliou3lem2  19725  aaliou3lem6  19730  dchrptlem1  20505  dchrptlem2  20506  lgseisenlem4  20593  lgsquadlem1  20595  lgsquad2lem1  20599  padicabv  20781  pellfund14  26994  rmxyadd  27017  m1expaddsub  27432
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-n0 9968  df-z 10027  df-uz 10233  df-seq 11049  df-exp 11107
  Copyright terms: Public domain W3C validator