HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Theorem expcnv 11507
Description: A sequence of powers of a complex number  A with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Proof shortened by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
expcnv.1  |-  ( ph  ->  A  e.  CC )
expcnv.2  |-  ( ph  ->  ( abs `  A
)  <  1 )
Assertion
Ref Expression
expcnv  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Distinct variable group:    A, n
Allowed substitution hint:    ph( n)

Proof of Theorem expcnv
StepHypRef Expression
1 nnuz 9632 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1z 9422 . . . 4  |-  1  e.  ZZ
32a1i 10 . . 3  |-  ( (
ph  /\  A  = 
0 )  ->  1  e.  ZZ )
4 nn0ex 9340 . . . . 5  |-  NN0  e.  _V
54mptex 5195 . . . 4  |-  ( n  e.  NN0  |->  ( A ^ n ) )  e.  _V
65a1i 10 . . 3  |-  ( (
ph  /\  A  = 
0 )  ->  (
n  e.  NN0  |->  ( A ^ n ) )  e.  _V )
7 0cn 8251 . . . 4  |-  0  e.  CC
87a1i 10 . . 3  |-  ( (
ph  /\  A  = 
0 )  ->  0  e.  CC )
9 nnnn0 9341 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  NN0 )
10 oveq2 5368 . . . . . . 7  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
11 eqid 2064 . . . . . . 7  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
12 ovex 5385 . . . . . . 7  |-  ( A ^ k )  e. 
_V
1310, 11, 12fvmpt 5121 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
149, 13syl 15 . . . . 5  |-  ( k  e.  NN  ->  (
( n  e.  NN0  |->  ( A ^ n ) ) `  k )  =  ( A ^
k ) )
15 simpr 441 . . . . . 6  |-  ( (
ph  /\  A  = 
0 )  ->  A  =  0 )
1615oveq1d 5375 . . . . 5  |-  ( (
ph  /\  A  = 
0 )  ->  ( A ^ k )  =  ( 0 ^ k
) )
1714, 16sylan9eqr 2118 . . . 4  |-  ( ( ( ph  /\  A  =  0 )  /\  k  e.  NN )  ->  ( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  ( 0 ^ k ) )
18 0exp 10492 . . . . 5  |-  ( k  e.  NN  ->  (
0 ^ k )  =  0 )
1918adantl 446 . . . 4  |-  ( ( ( ph  /\  A  =  0 )  /\  k  e.  NN )  ->  ( 0 ^ k
)  =  0 )
2017, 19eqtrd 2096 . . 3  |-  ( ( ( ph  /\  A  =  0 )  /\  k  e.  NN )  ->  ( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  0 )
211, 3, 6, 8, 20climconst 11208 . 2  |-  ( (
ph  /\  A  = 
0 )  ->  (
n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
222a1i 10 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  1  e.  ZZ )
23 expcnv.2 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  A
)  <  1 )
2423adantr 445 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  A )  <  1 )
25 expcnv.1 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  CC )
26 absrpcl 10968 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  RR+ )
2725, 26sylan 451 . . . . . . . . . 10  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  A )  e.  RR+ )
2827reclt1d 9772 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  A
)  <  1  <->  1  <  ( 1  /  ( abs `  A ) ) ) )
2924, 28mpbid 199 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  1  <  ( 1  /  ( abs `  A ) ) )
30 1re 8255 . . . . . . . . 9  |-  1  e.  RR
3127rpreccld 9769 . . . . . . . . . 10  |-  ( (
ph  /\  A  =/=  0 )  ->  (
1  /  ( abs `  A ) )  e.  RR+ )
3231rpred 9759 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  (
1  /  ( abs `  A ) )  e.  RR )
33 difrp 9756 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  ( 1  /  ( abs `  A ) )  e.  RR )  -> 
( 1  <  (
1  /  ( abs `  A ) )  <->  ( (
1  /  ( abs `  A ) )  - 
1 )  e.  RR+ ) )
3430, 32, 33sylancr 637 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
1  <  ( 1  /  ( abs `  A
) )  <->  ( (
1  /  ( abs `  A ) )  - 
1 )  e.  RR+ ) )
3529, 34mpbid 199 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( 1  /  ( abs `  A ) )  -  1 )  e.  RR+ )
3635rpreccld 9769 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  (
1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  e.  RR+ )
3736rpcnd 9761 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  (
1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  e.  CC )
38 divcnv 11497 . . . . 5  |-  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  e.  CC  ->  ( n  e.  NN  |->  ( ( 1  /  ( ( 1  /  ( abs `  A
) )  -  1 ) )  /  n
) )  ~~>  0 )
3937, 38syl 15 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  (
n  e.  NN  |->  ( ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  n ) )  ~~>  0 )
40 nnex 9130 . . . . . 6  |-  NN  e.  _V
4140mptex 5195 . . . . 5  |-  ( n  e.  NN  |->  ( ( abs `  A ) ^ n ) )  e.  _V
4241a1i 10 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  (
n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  e.  _V )
43 oveq2 5368 . . . . . . 7  |-  ( n  =  k  ->  (
( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  n )  =  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  k
) )
44 eqid 2064 . . . . . . 7  |-  ( n  e.  NN  |->  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  /  n ) )  =  ( n  e.  NN  |->  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  n
) )
45 ovex 5385 . . . . . . 7  |-  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  / 
k )  e.  _V
4643, 44, 45fvmpt 5121 . . . . . 6  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  n
) ) `  k
)  =  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  / 
k ) )
4746adantl 446 . . . . 5  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  n
) ) `  k
)  =  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  / 
k ) )
4836rpred 9759 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  (
1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  e.  RR )
49 nndivre 9159 . . . . . 6  |-  ( ( ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  e.  RR  /\  k  e.  NN )  ->  (
( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  k )  e.  RR )
5048, 49sylan 451 . . . . 5  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  k )  e.  RR )
5147, 50eqeltrd 2138 . . . 4  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  n
) ) `  k
)  e.  RR )
52 oveq2 5368 . . . . . . . 8  |-  ( n  =  k  ->  (
( abs `  A
) ^ n )  =  ( ( abs `  A ) ^ k
) )
53 eqid 2064 . . . . . . . 8  |-  ( n  e.  NN  |->  ( ( abs `  A ) ^ n ) )  =  ( n  e.  NN  |->  ( ( abs `  A ) ^ n
) )
54 ovex 5385 . . . . . . . 8  |-  ( ( abs `  A ) ^ k )  e. 
_V
5552, 53, 54fvmpt 5121 . . . . . . 7  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  =  ( ( abs `  A ) ^ k
) )
5655adantl 446 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  =  ( ( abs `  A ) ^ k
) )
57 nnz 9414 . . . . . . 7  |-  ( k  e.  NN  ->  k  e.  ZZ )
58 rpexpcl 10477 . . . . . . 7  |-  ( ( ( abs `  A
)  e.  RR+  /\  k  e.  ZZ )  ->  (
( abs `  A
) ^ k )  e.  RR+ )
5927, 57, 58syl2an 457 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( abs `  A
) ^ k )  e.  RR+ )
6056, 59eqeltrd 2138 . . . . 5  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  e.  RR+ )
6160rpred 9759 . . . 4  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  e.  RR )
62 nnrp 9732 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  RR+ )
63 rpmulcl 9744 . . . . . . . 8  |-  ( ( ( ( 1  / 
( abs `  A
) )  -  1 )  e.  RR+  /\  k  e.  RR+ )  ->  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  e.  RR+ )
6435, 62, 63syl2an 457 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  e.  RR+ )
6564rpred 9759 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  e.  RR )
66 peano2re 8402 . . . . . . . . . 10  |-  ( ( ( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  e.  RR  ->  (
( ( ( 1  /  ( abs `  A
) )  -  1 )  x.  k )  +  1 )  e.  RR )
6765, 66syl 15 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( ( ( 1  /  ( abs `  A
) )  -  1 )  x.  k )  +  1 )  e.  RR )
68 rpexpcl 10477 . . . . . . . . . . 11  |-  ( ( ( 1  /  ( abs `  A ) )  e.  RR+  /\  k  e.  ZZ )  ->  (
( 1  /  ( abs `  A ) ) ^ k )  e.  RR+ )
6931, 57, 68syl2an 457 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( 1  /  ( abs `  A ) ) ^ k )  e.  RR+ )
7069rpred 9759 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( 1  /  ( abs `  A ) ) ^ k )  e.  RR )
7165lep1d 9067 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  <_  ( ( ( ( 1  /  ( abs `  A ) )  -  1 )  x.  k )  +  1 ) )
7232adantr 445 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
1  /  ( abs `  A ) )  e.  RR )
739adantl 446 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  k  e.  NN0 )
7431rpge0d 9763 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =/=  0 )  ->  0  <_  ( 1  /  ( abs `  A ) ) )
7574adantr 445 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  0  <_  ( 1  /  ( abs `  A ) ) )
76 bernneq2 10582 . . . . . . . . . 10  |-  ( ( ( 1  /  ( abs `  A ) )  e.  RR  /\  k  e.  NN0  /\  0  <_ 
( 1  /  ( abs `  A ) ) )  ->  ( (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  +  1 )  <_ 
( ( 1  / 
( abs `  A
) ) ^ k
) )
7772, 73, 75, 76syl3anc 1140 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( ( ( 1  /  ( abs `  A
) )  -  1 )  x.  k )  +  1 )  <_ 
( ( 1  / 
( abs `  A
) ) ^ k
) )
7865, 67, 70, 71, 77letrd 8390 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  <_  ( ( 1  /  ( abs `  A
) ) ^ k
) )
7927rpcnne0d 9768 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  A
)  e.  CC  /\  ( abs `  A )  =/=  0 ) )
80 exprec 10498 . . . . . . . . . 10  |-  ( ( ( abs `  A
)  e.  CC  /\  ( abs `  A )  =/=  0  /\  k  e.  ZZ )  ->  (
( 1  /  ( abs `  A ) ) ^ k )  =  ( 1  /  (
( abs `  A
) ^ k ) ) )
81803expa 1110 . . . . . . . . 9  |-  ( ( ( ( abs `  A
)  e.  CC  /\  ( abs `  A )  =/=  0 )  /\  k  e.  ZZ )  ->  ( ( 1  / 
( abs `  A
) ) ^ k
)  =  ( 1  /  ( ( abs `  A ) ^ k
) ) )
8279, 57, 81syl2an 457 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( 1  /  ( abs `  A ) ) ^ k )  =  ( 1  /  (
( abs `  A
) ^ k ) ) )
8378, 82breqtrd 3610 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  <_  ( 1  / 
( ( abs `  A
) ^ k ) ) )
8464, 59, 83lerec2d 9780 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( abs `  A
) ^ k )  <_  ( 1  / 
( ( ( 1  /  ( abs `  A
) )  -  1 )  x.  k ) ) )
8535rpcnne0d 9768 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( ( 1  / 
( abs `  A
) )  -  1 )  e.  CC  /\  ( ( 1  / 
( abs `  A
) )  -  1 )  =/=  0 ) )
86 nncn 9132 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  CC )
87 nnne0 9156 . . . . . . . 8  |-  ( k  e.  NN  ->  k  =/=  0 )
8886, 87jca 512 . . . . . . 7  |-  ( k  e.  NN  ->  (
k  e.  CC  /\  k  =/=  0 ) )
89 recdiv2 8865 . . . . . . 7  |-  ( ( ( ( ( 1  /  ( abs `  A
) )  -  1 )  e.  CC  /\  ( ( 1  / 
( abs `  A
) )  -  1 )  =/=  0 )  /\  ( k  e.  CC  /\  k  =/=  0 ) )  -> 
( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  k
)  =  ( 1  /  ( ( ( 1  /  ( abs `  A ) )  - 
1 )  x.  k
) ) )
9085, 88, 89syl2an 457 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  k )  =  ( 1  /  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k ) ) )
9184, 90breqtrrd 3612 . . . . 5  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( abs `  A
) ^ k )  <_  ( ( 1  /  ( ( 1  /  ( abs `  A
) )  -  1 ) )  /  k
) )
9291, 56, 473brtr4d 3616 . . . 4  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  <_  ( ( n  e.  NN  |->  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  /  n ) ) `  k ) )
9360rpge0d 9763 . . . 4  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  0  <_  ( ( n  e.  NN  |->  ( ( abs `  A ) ^ n
) ) `  k
) )
941, 22, 39, 42, 51, 61, 92, 93climsqz2 11306 . . 3  |-  ( (
ph  /\  A  =/=  0 )  ->  (
n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  ~~>  0 )
952a1i 10 . . . . 5  |-  ( ph  ->  1  e.  ZZ )
965a1i 10 . . . . 5  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  e.  _V )
9741a1i 10 . . . . 5  |-  ( ph  ->  ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  e.  _V )
989adantl 446 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  k  e. 
NN0 )
9998, 13syl 15 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
100 expcl 10476 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
10125, 9, 100syl2an 457 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( A ^ k )  e.  CC )
10299, 101eqeltrd 2138 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k )  e.  CC )
103 absexp 10981 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )
10425, 9, 103syl2an 457 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( A ^ k
) )  =  ( ( abs `  A
) ^ k ) )
10599fveq2d 5048 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k ) )  =  ( abs `  ( A ^ k ) ) )
10655adantl 446 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  =  ( ( abs `  A ) ^ k
) )
107104, 105, 1063eqtr4rd 2107 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  =  ( abs `  (
( n  e.  NN0  |->  ( A ^ n ) ) `  k ) ) )
1081, 95, 96, 97, 102, 107climabs0 11250 . . . 4  |-  ( ph  ->  ( ( n  e. 
NN0  |->  ( A ^
n ) )  ~~>  0  <->  (
n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  ~~>  0 ) )
109108biimpar 465 . . 3  |-  ( (
ph  /\  ( n  e.  NN  |->  ( ( abs `  A ) ^ n
) )  ~~>  0 )  ->  ( n  e. 
NN0  |->  ( A ^
n ) )  ~~>  0 )
11094, 109syldan 450 . 2  |-  ( (
ph  /\  A  =/=  0 )  ->  (
n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
11121, 110pm2.61dane 2257 1  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 174    /\ wa 356    = wceq 1520    e. wcel 1522    =/= wne 2182   _Vcvv 2475   class class class wbr 3586    e. cmpt 3640   ` cfv 4268  (class class class)co 5360   CCcc 8156   RRcr 8157   0cc0 8158   1c1 8159    + caddc 8161    x. cmul 8163    <_ cle 8282    < clt 8286    - cmin 8450    / cdiv 8815   NNcn 9124   NN0cn0 9334   ZZcz 9393   RR+crp 9723   ^cexp 10459   abscabs 10914    ~~> cli 11149
This theorem is referenced by:  explecnv  11508  geolim  11511  geo2lim  11515  iscmet3lem3  17396  mbfi1fseqlem6  17755  geomcau  24250
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1442  ax-6 1443  ax-7 1444  ax-gen 1445  ax-8 1524  ax-11 1525  ax-13 1526  ax-14 1527  ax-17 1529  ax-12o 1562  ax-10 1576  ax-9 1582  ax-4 1589  ax-16 1775  ax-ext 2046  ax-rep 3691  ax-sep 3701  ax-nul 3709  ax-pow 3745  ax-pr 3769  ax-un 4061  ax-cnex 8213  ax-resscn 8214  ax-1cn 8215  ax-icn 8216  ax-addcl 8217  ax-addrcl 8218  ax-mulcl 8219  ax-mulrcl 8220  ax-mulcom 8221  ax-addass 8222  ax-mulass 8223  ax-distr 8224  ax-i2m1 8225  ax-1ne0 8226  ax-1rid 8227  ax-rnegex 8228  ax-rrecex 8229  ax-cnre 8230  ax-pre-lttri 8231  ax-pre-lttrn 8232  ax-pre-ltadd 8233  ax-pre-mulgt0 8234  ax-pre-sup 8235
This theorem depends on definitions:  df-bi 175  df-or 357  df-an 358  df-3or 897  df-3an 898  df-tru 1259  df-ex 1447  df-sb 1736  df-eu 1958  df-mo 1959  df-clab 2052  df-cleq 2057  df-clel 2060  df-ne 2184  df-nel 2185  df-ral 2278  df-rex 2279  df-reu 2280  df-rab 2281  df-v 2477  df-sbc 2651  df-csb 2733  df-dif 2796  df-un 2798  df-in 2800  df-ss 2804  df-pss 2806  df-nul 3073  df-if 3182  df-pw 3243  df-sn 3261  df-pr 3262  df-tp 3263  df-op 3264  df-uni 3425  df-iun 3502  df-br 3587  df-opab 3641  df-mpt 3642  df-tr 3674  df-eprel 3856  df-id 3860  df-po 3865  df-so 3866  df-fr 3903  df-we 3905  df-ord 3946  df-on 3947  df-lim 3948  df-suc 3949  df-om 4224  df-xp 4270  df-rel 4271  df-cnv 4272  df-co 4273  df-dm 4274  df-rn 4275  df-res 4276  df-ima 4277  df-fun 4278  df-fn 4279  df-f 4280  df-f1 4281  df-fo 4282  df-f1o 4283  df-fv 4284  df-ov 5363  df-oprab 5364  df-mpt2 5365  df-2nd 5615  df-iota 5770  df-recs 5843  df-rdg 5878  df-er 6115  df-pm 6220  df-en 6302  df-dom 6303  df-sdom 6304  df-riota 6468  df-sup 6676  df-pnf 8287  df-mnf 8288  df-xr 8289  df-ltxr 8290  df-le 8291  df-sub 8452  df-neg 8453  df-div 8816  df-n 9125  df-2 9182  df-3 9183  df-n0 9335  df-z 9394  df-uz 9600  df-rp 9724  df-fl 10285  df-seq 10402  df-exp 10460  df-cj 10779  df-re 10780  df-im 10781  df-sqr 10915  df-abs 10916  df-clim 11153  df-rlim 11154
Copyright terms: Public domain