Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expgrowth Unicode version

Theorem expgrowth 27552
Description: Exponential growth and decay model. The derivative of a function y of variable t equals a constant k times y itself, iff y equals some constant C times the exponential of kt. This theorem and expgrowthi 27550 illustrate one of the simplest and most crucial classes of differential equations, equations that relate functions to their derivatives.

Section 6.3 of [Strang] p. 242 calls y' = ky "the most important differential equation in applied mathematics". In the field of population ecology it is known as the Malthusian growth model or exponential law, and C, k, and t correspond to initial population size, growth rate, and time respectively (https://en.wikipedia.org/wiki/Malthusian_growth_model); and in finance, the model appears in a similar role in continuous compounding with C as the initial amount of money. In exponential decay models, k is often expressed as the negative of a positive constant λ.

Here y' is given as  ( S  _D  Y
), C as  c, and ky as  ( ( S  X.  { K }
)  o F  x.  Y ).  ( S  X.  { K } ) is the constant function that maps any real or complex input to k and  o F  x. is multiplication as a function operation.

The leftward direction of the biconditional is as given in http://www.saylor.org/site/wp-content/uploads/2011/06/MA221-2.1.1.pdf pp. 1-2, which also notes the reverse direction ("While we will not prove this here, it turns out that these are the only functions that satisfy this equation."). The rightward direction is Theorem 5.1 of [LarsonHostetlerEdwards] p. 375 (which notes " C is the initial value of y, and k is the proportionality constant. Exponential growth occurs when k > 0, and exponential decay occurs when k < 0."); its proof here closely follows the proof of y' = y in https://proofwiki.org/wiki/Exponential_Growth_Equation/Special_Case.

Statements for this and expgrowthi 27550 formulated by Mario Carneiro. (Contributed by Steve Rodriguez, 24-Nov-2015.)

Hypotheses
Ref Expression
expgrowth.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
expgrowth.k  |-  ( ph  ->  K  e.  CC )
expgrowth.y  |-  ( ph  ->  Y : S --> CC )
expgrowth.dy  |-  ( ph  ->  dom  ( S  _D  Y )  =  S )
Assertion
Ref Expression
expgrowth  |-  ( ph  ->  ( ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y )  <->  E. c  e.  CC  Y  =  ( t  e.  S  |->  ( c  x.  ( exp `  ( K  x.  t
) ) ) ) ) )
Distinct variable groups:    t, c, K    S, c, t    Y, c
Allowed substitution hints:    ph( t, c)    Y( t)

Proof of Theorem expgrowth
Dummy variables  u  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expgrowth.s . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  S  e.  { RR ,  CC } )
2 cnex 8818 . . . . . . . . . . . . . . . . . . 19  |-  CC  e.  _V
32prid2 3735 . . . . . . . . . . . . . . . . . 18  |-  CC  e.  { RR ,  CC }
43a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  CC  e.  { RR ,  CC } )
5 expgrowth.k . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  K  e.  CC )
6 recnprss 19254 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
71, 6syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  S  C_  CC )
87sseld 3179 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( u  e.  S  ->  u  e.  CC ) )
9 mulcl 8821 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  CC  /\  u  e.  CC )  ->  ( K  x.  u
)  e.  CC )
105, 8, 9ee12an 1353 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( u  e.  S  ->  ( K  x.  u
)  e.  CC ) )
1110imp 418 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  u  e.  S )  ->  ( K  x.  u )  e.  CC )
1211negcld 9144 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  u  e.  S )  ->  -u ( K  x.  u )  e.  CC )
135negcld 9144 . . . . . . . . . . . . . . . . . 18  |-  ( ph  -> 
-u K  e.  CC )
1413adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  u  e.  S )  ->  -u K  e.  CC )
15 efcl 12364 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  CC  ->  ( exp `  y )  e.  CC )
1615adantl 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  CC )  ->  ( exp `  y )  e.  CC )
175adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  u  e.  S )  ->  K  e.  CC )
188imp 418 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  u  e.  S )  ->  u  e.  CC )
19 ax-1cn 8795 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  CC
2019a1i 10 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  u  e.  S )  ->  1  e.  CC )
211dvmptid 19306 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( S  _D  (
u  e.  S  |->  u ) )  =  ( u  e.  S  |->  1 ) )
221, 18, 20, 21, 5dvmptcmul 19313 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( S  _D  (
u  e.  S  |->  ( K  x.  u ) ) )  =  ( u  e.  S  |->  ( K  x.  1 ) ) )
235mulid1d 8852 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( K  x.  1 )  =  K )
2423mpteq2dv 4107 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( u  e.  S  |->  ( K  x.  1 ) )  =  ( u  e.  S  |->  K ) )
2522, 24eqtrd 2315 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( S  _D  (
u  e.  S  |->  ( K  x.  u ) ) )  =  ( u  e.  S  |->  K ) )
261, 11, 17, 25dvmptneg 19315 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( S  _D  (
u  e.  S  |->  -u ( K  x.  u
) ) )  =  ( u  e.  S  |-> 
-u K ) )
27 dvef 19327 . . . . . . . . . . . . . . . . . . 19  |-  ( CC 
_D  exp )  =  exp
28 eff 12363 . . . . . . . . . . . . . . . . . . . . . 22  |-  exp : CC
--> CC
29 ffn 5389 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( exp
: CC --> CC  ->  exp 
Fn  CC )
3028, 29ax-mp 8 . . . . . . . . . . . . . . . . . . . . 21  |-  exp  Fn  CC
31 dffn5 5568 . . . . . . . . . . . . . . . . . . . . 21  |-  ( exp 
Fn  CC  <->  exp  =  ( y  e.  CC  |->  ( exp `  y ) ) )
3230, 31mpbi 199 . . . . . . . . . . . . . . . . . . . 20  |-  exp  =  ( y  e.  CC  |->  ( exp `  y ) )
3332oveq2i 5869 . . . . . . . . . . . . . . . . . . 19  |-  ( CC 
_D  exp )  =  ( CC  _D  ( y  e.  CC  |->  ( exp `  y ) ) )
3427, 33, 323eqtr3i 2311 . . . . . . . . . . . . . . . . . 18  |-  ( CC 
_D  ( y  e.  CC  |->  ( exp `  y
) ) )  =  ( y  e.  CC  |->  ( exp `  y ) )
3534a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( CC  _D  (
y  e.  CC  |->  ( exp `  y ) ) )  =  ( y  e.  CC  |->  ( exp `  y ) ) )
36 fveq2 5525 . . . . . . . . . . . . . . . . 17  |-  ( y  =  -u ( K  x.  u )  ->  ( exp `  y )  =  ( exp `  -u ( K  x.  u )
) )
371, 4, 12, 14, 16, 16, 26, 35, 36, 36dvmptco 19321 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( S  _D  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) ) )
3837oveq2d 5874 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Y  o F  x.  ( S  _D  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( Y  o F  x.  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) ) ) )
39 expgrowth.y . . . . . . . . . . . . . . . 16  |-  ( ph  ->  Y : S --> CC )
40 efcl 12364 . . . . . . . . . . . . . . . . . . . 20  |-  ( -u ( K  x.  u
)  e.  CC  ->  ( exp `  -u ( K  x.  u )
)  e.  CC )
4112, 40syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  u  e.  S )  ->  ( exp `  -u ( K  x.  u ) )  e.  CC )
4241, 14mulcld 8855 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  u  e.  S )  ->  (
( exp `  -u ( K  x.  u )
)  x.  -u K
)  e.  CC )
43 eqid 2283 . . . . . . . . . . . . . . . . . 18  |-  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) )  =  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) )
4442, 43fmptd 5684 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) ) : S --> CC )
4537feq1d 5379 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( S  _D  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) : S --> CC  <->  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) ) : S --> CC ) )
4644, 45mpbird 223 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( S  _D  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) : S --> CC )
47 mulcom 8823 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  =  ( y  x.  x ) )
4847adantl 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  =  ( y  x.  x ) )
491, 39, 46, 48caofcom 6109 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Y  o F  x.  ( S  _D  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( S  _D  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  o F  x.  Y ) )
5038, 49eqtr3d 2317 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( Y  o F  x.  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u ) )  x.  -u K ) ) )  =  ( ( S  _D  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  o F  x.  Y ) )
5150oveq2d 5874 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( S  _D  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( Y  o F  x.  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) ) ) )  =  ( ( ( S  _D  Y )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  o F  +  ( ( S  _D  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  x.  Y ) ) )
52 fconst6g 5430 . . . . . . . . . . . . . . . . . 18  |-  ( -u K  e.  CC  ->  ( S  X.  { -u K } ) : S --> CC )
5313, 52syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( S  X.  { -u K } ) : S --> CC )
54 eqid 2283 . . . . . . . . . . . . . . . . . 18  |-  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) )  =  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) )
5541, 54fmptd 5684 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) : S --> CC )
561, 53, 55, 48caofcom 6109 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( S  X.  { -u K } )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) )  o F  x.  ( S  X.  { -u K } ) ) )
57 eqidd 2284 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) )  =  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )
58 fconstmpt 4732 . . . . . . . . . . . . . . . . . 18  |-  ( S  X.  { -u K } )  =  ( u  e.  S  |->  -u K )
5958a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( S  X.  { -u K } )  =  ( u  e.  S  |-> 
-u K ) )
601, 41, 14, 57, 59offval2 6095 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) )  o F  x.  ( S  X.  { -u K } ) )  =  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) ) )
6156, 60eqtrd 2315 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( S  X.  { -u K } )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) ) )
6261oveq2d 5874 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( Y  o F  x.  ( ( S  X.  { -u K } )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( Y  o F  x.  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) ) ) )
6362oveq2d 5874 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( S  _D  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( Y  o F  x.  ( ( S  X.  { -u K } )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) ) )  =  ( ( ( S  _D  Y
)  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  o F  +  ( Y  o F  x.  (
u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) ) ) ) )
64 expgrowth.dy . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  ( S  _D  Y )  =  S )
6537dmeqd 4881 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  ( S  _D  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  dom  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u ) )  x.  -u K ) ) )
66 fdm 5393 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) ) : S --> CC  ->  dom  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) )  =  S )
6744, 66syl 15 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u ) )  x.  -u K ) )  =  S )
6865, 67eqtrd 2315 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  ( S  _D  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  S )
691, 39, 55, 64, 68dvmulf 19292 . . . . . . . . . . . . 13  |-  ( ph  ->  ( S  _D  ( Y  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( S  _D  Y )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  o F  +  ( ( S  _D  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  x.  Y ) ) )
7051, 63, 693eqtr4rd 2326 . . . . . . . . . . . 12  |-  ( ph  ->  ( S  _D  ( Y  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( S  _D  Y )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  o F  +  ( Y  o F  x.  (
( S  X.  { -u K } )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) ) ) )
71 ofmul12 27542 . . . . . . . . . . . . . 14  |-  ( ( ( S  e.  { RR ,  CC }  /\  Y : S --> CC )  /\  ( ( S  X.  { -u K } ) : S --> CC  /\  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) : S --> CC ) )  ->  ( Y  o F  x.  (
( S  X.  { -u K } )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) )  =  ( ( S  X.  { -u K } )  o F  x.  ( Y  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) ) )
721, 39, 53, 55, 71syl22anc 1183 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Y  o F  x.  ( ( S  X.  { -u K } )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( S  X.  { -u K } )  o F  x.  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) ) )
7372oveq2d 5874 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( S  _D  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( Y  o F  x.  ( ( S  X.  { -u K } )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) ) )  =  ( ( ( S  _D  Y
)  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  o F  +  ( ( S  X.  { -u K } )  o F  x.  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) ) ) )
7470, 73eqtrd 2315 . . . . . . . . . . 11  |-  ( ph  ->  ( S  _D  ( Y  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( S  _D  Y )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  o F  +  ( ( S  X.  { -u K } )  o F  x.  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) ) ) )
75 oveq1 5865 . . . . . . . . . . . 12  |-  ( ( S  _D  Y )  =  ( ( S  X.  { K }
)  o F  x.  Y )  ->  (
( S  _D  Y
)  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( ( ( S  X.  { K }
)  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )
7675oveq1d 5873 . . . . . . . . . . 11  |-  ( ( S  _D  Y )  =  ( ( S  X.  { K }
)  o F  x.  Y )  ->  (
( ( S  _D  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  o F  +  ( ( S  X.  { -u K } )  o F  x.  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) ) )  =  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( ( S  X.  { -u K } )  o F  x.  ( Y  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) ) ) )
7774, 76sylan9eq 2335 . . . . . . . . . 10  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( ( S  X.  { -u K } )  o F  x.  ( Y  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) ) ) )
78 mulass 8825 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  x.  y
)  x.  z )  =  ( x  x.  ( y  x.  z
) ) )
7978adantl 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) )  -> 
( ( x  x.  y )  x.  z
)  =  ( x  x.  ( y  x.  z ) ) )
801, 53, 39, 55, 79caofass 6111 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( S  X.  { -u K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  =  ( ( S  X.  { -u K } )  o F  x.  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) ) )
8180oveq2d 5874 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( ( ( S  X.  { -u K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) )  =  ( ( ( ( S  X.  { K }
)  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  o F  +  ( ( S  X.  { -u K } )  o F  x.  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) ) ) )
8281eqeq2d 2294 . . . . . . . . . . 11  |-  ( ph  ->  ( ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( ( ( S  X.  { -u K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) )  <->  ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( ( S  X.  { -u K } )  o F  x.  ( Y  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) ) ) ) )
8382adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  ( ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) )  =  ( ( ( ( S  X.  { K }
)  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  o F  +  ( ( ( S  X.  { -u K } )  o F  x.  Y )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  <-> 
( S  _D  ( Y  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( ( S  X.  { -u K } )  o F  x.  ( Y  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) ) ) ) )
8477, 83mpbird 223 . . . . . . . . 9  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( ( ( S  X.  { -u K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) ) )
85 mulcl 8821 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
8685adantl 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  e.  CC )
87 fconst6g 5430 . . . . . . . . . . . . . 14  |-  ( K  e.  CC  ->  ( S  X.  { K }
) : S --> CC )
885, 87syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  ( S  X.  { K } ) : S --> CC )
89 inidm 3378 . . . . . . . . . . . . 13  |-  ( S  i^i  S )  =  S
9086, 88, 39, 1, 1, 89off 6093 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( S  X.  { K } )  o F  x.  Y ) : S --> CC )
9186, 53, 39, 1, 1, 89off 6093 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( S  X.  { -u K } )  o F  x.  Y
) : S --> CC )
92 adddir 8830 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  +  y )  x.  z )  =  ( ( x  x.  z )  +  ( y  x.  z
) ) )
9392adantl 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) )  -> 
( ( x  +  y )  x.  z
)  =  ( ( x  x.  z )  +  ( y  x.  z ) ) )
941, 55, 90, 91, 93caofdir 6114 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  +  ( ( S  X.  { -u K } )  o F  x.  Y ) )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( ( ( S  X.  { -u K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) ) )
9594eqeq2d 2294 . . . . . . . . . 10  |-  ( ph  ->  ( ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  +  ( ( S  X.  { -u K } )  o F  x.  Y ) )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  <->  ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( ( ( S  X.  { -u K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) ) ) )
9695adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  ( ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) )  =  ( ( ( ( S  X.  { K }
)  o F  x.  Y )  o F  +  ( ( S  X.  { -u K } )  o F  x.  Y ) )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  <->  ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( ( ( S  X.  { -u K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) ) ) )
9784, 96mpbird 223 . . . . . . . 8  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  +  ( ( S  X.  { -u K } )  o F  x.  Y ) )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )
98 ofnegsub 9744 . . . . . . . . . . . . 13  |-  ( ( S  e.  { RR ,  CC }  /\  (
( S  X.  { K } )  o F  x.  Y ) : S --> CC  /\  (
( S  X.  { K } )  o F  x.  Y ) : S --> CC )  -> 
( ( ( S  X.  { K }
)  o F  x.  Y )  o F  +  ( ( S  X.  { -u 1 } )  o F  x.  ( ( S  X.  { K }
)  o F  x.  Y ) ) )  =  ( ( ( S  X.  { K } )  o F  x.  Y )  o F  -  ( ( S  X.  { K } )  o F  x.  Y ) ) )
991, 90, 90, 98syl3anc 1182 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( S  X.  { K }
)  o F  x.  Y )  o F  +  ( ( S  X.  { -u 1 } )  o F  x.  ( ( S  X.  { K }
)  o F  x.  Y ) ) )  =  ( ( ( S  X.  { K } )  o F  x.  Y )  o F  -  ( ( S  X.  { K } )  o F  x.  Y ) ) )
100 neg1cn 9813 . . . . . . . . . . . . . . . . 17  |-  -u 1  e.  CC
101100fconst6 5431 . . . . . . . . . . . . . . . 16  |-  ( S  X.  { -u 1 } ) : S --> CC
102101a1i 10 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( S  X.  { -u 1 } ) : S --> CC )
1031, 102, 88, 39, 79caofass 6111 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( S  X.  { -u 1 } )  o F  x.  ( S  X.  { K } ) )  o F  x.  Y
)  =  ( ( S  X.  { -u
1 } )  o F  x.  ( ( S  X.  { K } )  o F  x.  Y ) ) )
104100a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( ph  -> 
-u 1  e.  CC )
1051, 104, 5ofc12 6102 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( S  X.  { -u 1 } )  o F  x.  ( S  X.  { K }
) )  =  ( S  X.  { (
-u 1  x.  K
) } ) )
1065mulm1d 9231 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( -u 1  x.  K )  =  -u K )
107106sneqd 3653 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  { ( -u 1  x.  K ) }  =  { -u K } )
108107xpeq2d 4713 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( S  X.  {
( -u 1  x.  K
) } )  =  ( S  X.  { -u K } ) )
109105, 108eqtrd 2315 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( S  X.  { -u 1 } )  o F  x.  ( S  X.  { K }
) )  =  ( S  X.  { -u K } ) )
110109oveq1d 5873 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( S  X.  { -u 1 } )  o F  x.  ( S  X.  { K } ) )  o F  x.  Y
)  =  ( ( S  X.  { -u K } )  o F  x.  Y ) )
111103, 110eqtr3d 2317 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( S  X.  { -u 1 } )  o F  x.  (
( S  X.  { K } )  o F  x.  Y ) )  =  ( ( S  X.  { -u K } )  o F  x.  Y ) )
112111oveq2d 5874 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( S  X.  { K }
)  o F  x.  Y )  o F  +  ( ( S  X.  { -u 1 } )  o F  x.  ( ( S  X.  { K }
)  o F  x.  Y ) ) )  =  ( ( ( S  X.  { K } )  o F  x.  Y )  o F  +  ( ( S  X.  { -u K } )  o F  x.  Y ) ) )
113 ofsubid 27541 . . . . . . . . . . . . 13  |-  ( ( S  e.  { RR ,  CC }  /\  (
( S  X.  { K } )  o F  x.  Y ) : S --> CC )  -> 
( ( ( S  X.  { K }
)  o F  x.  Y )  o F  -  ( ( S  X.  { K }
)  o F  x.  Y ) )  =  ( S  X.  {
0 } ) )
1141, 90, 113syl2anc 642 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( S  X.  { K }
)  o F  x.  Y )  o F  -  ( ( S  X.  { K }
)  o F  x.  Y ) )  =  ( S  X.  {
0 } ) )
11599, 112, 1143eqtr3d 2323 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( S  X.  { K }
)  o F  x.  Y )  o F  +  ( ( S  X.  { -u K } )  o F  x.  Y ) )  =  ( S  X.  { 0 } ) )
116115oveq1d 5873 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  +  ( ( S  X.  { -u K } )  o F  x.  Y ) )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( ( S  X.  { 0 } )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )
117116eqeq2d 2294 . . . . . . . . 9  |-  ( ph  ->  ( ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  +  ( ( S  X.  { -u K } )  o F  x.  Y ) )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  <->  ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( S  X.  { 0 } )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) ) )
118117adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  ( ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) )  =  ( ( ( ( S  X.  { K }
)  o F  x.  Y )  o F  +  ( ( S  X.  { -u K } )  o F  x.  Y ) )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  <->  ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( S  X.  { 0 } )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) ) )
11997, 118mpbid 201 . . . . . . 7  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( S  X.  { 0 } )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )
120 0cn 8831 . . . . . . . . . 10  |-  0  e.  CC
121120a1i 10 . . . . . . . . 9  |-  ( ph  ->  0  e.  CC )
122 mul02 8990 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
0  x.  x )  =  0 )
123122adantl 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  ( 0  x.  x )  =  0 )
1241, 55, 121, 121, 123caofid2 6108 . . . . . . . 8  |-  ( ph  ->  ( ( S  X.  { 0 } )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( S  X.  {
0 } ) )
125124adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  ( ( S  X.  { 0 } )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( S  X.  {
0 } ) )
126119, 125eqtrd 2315 . . . . . 6  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( S  X.  { 0 } ) )
1271adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  S  e.  { RR ,  CC } )
12886, 39, 55, 1, 1, 89off 6093 . . . . . . . 8  |-  ( ph  ->  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) : S --> CC )
129128adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) : S --> CC )
130126dmeqd 4881 . . . . . . . 8  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  dom  ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  dom  ( S  X.  { 0 } ) )
131120fconst6 5431 . . . . . . . . 9  |-  ( S  X.  { 0 } ) : S --> CC
132131fdmi 5394 . . . . . . . 8  |-  dom  ( S  X.  { 0 } )  =  S
133130, 132syl6eq 2331 . . . . . . 7  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  dom  ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  S )
134127, 129, 133dvconstbi 27551 . . . . . 6  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  ( ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) )  =  ( S  X.  { 0 } )  <->  E. x  e.  CC  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  =  ( S  X.  { x }
) ) )
135126, 134mpbid 201 . . . . 5  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  E. x  e.  CC  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( S  X.  {
x } ) )
136 oveq1 5865 . . . . . . . . . 10  |-  ( ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( S  X.  {
x } )  -> 
( ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  / 
( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( ( S  X.  { x } )  o F  /  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )
137 efne0 12377 . . . . . . . . . . . . . . 15  |-  ( -u ( K  x.  u
)  e.  CC  ->  ( exp `  -u ( K  x.  u )
)  =/=  0 )
138 eldifsn 3749 . . . . . . . . . . . . . . 15  |-  ( ( exp `  -u ( K  x.  u )
)  e.  ( CC 
\  { 0 } )  <->  ( ( exp `  -u ( K  x.  u ) )  e.  CC  /\  ( exp `  -u ( K  x.  u ) )  =/=  0 ) )
13940, 137, 138sylanbrc 645 . . . . . . . . . . . . . 14  |-  ( -u ( K  x.  u
)  e.  CC  ->  ( exp `  -u ( K  x.  u )
)  e.  ( CC 
\  { 0 } ) )
14012, 139syl 15 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  S )  ->  ( exp `  -u ( K  x.  u ) )  e.  ( CC  \  {
0 } ) )
141140, 54fmptd 5684 . . . . . . . . . . . 12  |-  ( ph  ->  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) : S --> ( CC  \  { 0 } ) )
142 ofdivcan4 27544 . . . . . . . . . . . 12  |-  ( ( S  e.  { RR ,  CC }  /\  Y : S --> CC  /\  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) : S --> ( CC  \  { 0 } ) )  -> 
( ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  / 
( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  Y )
1431, 39, 141, 142syl3anc 1182 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  / 
( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  Y )
144143eqeq1d 2291 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( Y  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  o F  /  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  =  ( ( S  X.  { x } )  o F  /  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  <->  Y  =  ( ( S  X.  { x } )  o F  /  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) ) )
145136, 144syl5ib 210 . . . . . . . . 9  |-  ( ph  ->  ( ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  =  ( S  X.  { x }
)  ->  Y  =  ( ( S  X.  { x } )  o F  /  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) ) )
146145adantr 451 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( S  X.  {
x } )  ->  Y  =  ( ( S  X.  { x }
)  o F  / 
( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) ) )
147 vex 2791 . . . . . . . . . . . . 13  |-  x  e. 
_V
148147a1i 10 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  S )  ->  x  e.  _V )
149 ovex 5883 . . . . . . . . . . . . 13  |-  ( 1  /  ( exp `  ( K  x.  u )
) )  e.  _V
150149a1i 10 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  S )  ->  (
1  /  ( exp `  ( K  x.  u
) ) )  e. 
_V )
151 fconstmpt 4732 . . . . . . . . . . . . 13  |-  ( S  X.  { x }
)  =  ( u  e.  S  |->  x )
152151a1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  ( S  X.  {
x } )  =  ( u  e.  S  |->  x ) )
153 efneg 12378 . . . . . . . . . . . . . 14  |-  ( ( K  x.  u )  e.  CC  ->  ( exp `  -u ( K  x.  u ) )  =  ( 1  /  ( exp `  ( K  x.  u ) ) ) )
15411, 153syl 15 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  S )  ->  ( exp `  -u ( K  x.  u ) )  =  ( 1  /  ( exp `  ( K  x.  u ) ) ) )
155154mpteq2dva 4106 . . . . . . . . . . . 12  |-  ( ph  ->  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) )  =  ( u  e.  S  |->  ( 1  /  ( exp `  ( K  x.  u
) ) ) ) )
1561, 148, 150, 152, 155offval2 6095 . . . . . . . . . . 11  |-  ( ph  ->  ( ( S  X.  { x } )  o F  /  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( u  e.  S  |->  ( x  /  (
1  /  ( exp `  ( K  x.  u
) ) ) ) ) )
157156adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( S  X.  { x } )  o F  /  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( u  e.  S  |->  ( x  /  (
1  /  ( exp `  ( K  x.  u
) ) ) ) ) )
158 efcl 12364 . . . . . . . . . . . . . . . . 17  |-  ( ( K  x.  u )  e.  CC  ->  ( exp `  ( K  x.  u ) )  e.  CC )
159 efne0 12377 . . . . . . . . . . . . . . . . 17  |-  ( ( K  x.  u )  e.  CC  ->  ( exp `  ( K  x.  u ) )  =/=  0 )
160158, 159jca 518 . . . . . . . . . . . . . . . 16  |-  ( ( K  x.  u )  e.  CC  ->  (
( exp `  ( K  x.  u )
)  e.  CC  /\  ( exp `  ( K  x.  u ) )  =/=  0 ) )
16111, 160syl 15 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  u  e.  S )  ->  (
( exp `  ( K  x.  u )
)  e.  CC  /\  ( exp `  ( K  x.  u ) )  =/=  0 ) )
162 ax-1ne0 8806 . . . . . . . . . . . . . . . . 17  |-  1  =/=  0
16319, 162pm3.2i 441 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  CC  /\  1  =/=  0 )
164 divdiv2 9472 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( 1  e.  CC  /\  1  =/=  0 )  /\  ( ( exp `  ( K  x.  u
) )  e.  CC  /\  ( exp `  ( K  x.  u )
)  =/=  0 ) )  ->  ( x  /  ( 1  / 
( exp `  ( K  x.  u )
) ) )  =  ( ( x  x.  ( exp `  ( K  x.  u )
) )  /  1
) )
165163, 164mp3an2 1265 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  ( ( exp `  ( K  x.  u )
)  e.  CC  /\  ( exp `  ( K  x.  u ) )  =/=  0 ) )  ->  ( x  / 
( 1  /  ( exp `  ( K  x.  u ) ) ) )  =  ( ( x  x.  ( exp `  ( K  x.  u
) ) )  / 
1 ) )
166161, 165sylan2 460 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( ph  /\  u  e.  S ) )  -> 
( x  /  (
1  /  ( exp `  ( K  x.  u
) ) ) )  =  ( ( x  x.  ( exp `  ( K  x.  u )
) )  /  1
) )
16711, 158syl 15 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  u  e.  S )  ->  ( exp `  ( K  x.  u ) )  e.  CC )
168 mulcl 8821 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( exp `  ( K  x.  u ) )  e.  CC )  -> 
( x  x.  ( exp `  ( K  x.  u ) ) )  e.  CC )
169167, 168sylan2 460 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  ( ph  /\  u  e.  S ) )  -> 
( x  x.  ( exp `  ( K  x.  u ) ) )  e.  CC )
170169div1d 9528 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( ph  /\  u  e.  S ) )  -> 
( ( x  x.  ( exp `  ( K  x.  u )
) )  /  1
)  =  ( x  x.  ( exp `  ( K  x.  u )
) ) )
171166, 170eqtrd 2315 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  ( ph  /\  u  e.  S ) )  -> 
( x  /  (
1  /  ( exp `  ( K  x.  u
) ) ) )  =  ( x  x.  ( exp `  ( K  x.  u )
) ) )
172171ancoms 439 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  u  e.  S )  /\  x  e.  CC )  ->  (
x  /  ( 1  /  ( exp `  ( K  x.  u )
) ) )  =  ( x  x.  ( exp `  ( K  x.  u ) ) ) )
173172an32s 779 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  CC )  /\  u  e.  S )  ->  (
x  /  ( 1  /  ( exp `  ( K  x.  u )
) ) )  =  ( x  x.  ( exp `  ( K  x.  u ) ) ) )
174173mpteq2dva 4106 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  CC )  ->  ( u  e.  S  |->  ( x  /  ( 1  / 
( exp `  ( K  x.  u )
) ) ) )  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) ) )
175157, 174eqtrd 2315 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( S  X.  { x } )  o F  /  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u ) ) ) ) )
176175eqeq2d 2294 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  ( Y  =  ( ( S  X.  { x }
)  o F  / 
( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  <->  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u ) ) ) ) ) )
177146, 176sylibd 205 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( S  X.  {
x } )  ->  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) ) ) )
178177reximdva 2655 . . . . . 6  |-  ( ph  ->  ( E. x  e.  CC  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  =  ( S  X.  { x }
)  ->  E. x  e.  CC  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u
) ) ) ) ) )
179178adantr 451 . . . . 5  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  ( E. x  e.  CC  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  =  ( S  X.  { x }
)  ->  E. x  e.  CC  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u
) ) ) ) ) )
180135, 179mpd 14 . . . 4  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  E. x  e.  CC  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) ) )
181180ex 423 . . 3  |-  ( ph  ->  ( ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y )  ->  E. x  e.  CC  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) ) ) )
1821adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u ) ) ) ) ) )  ->  S  e.  { RR ,  CC } )
1835adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u ) ) ) ) ) )  ->  K  e.  CC )
184 simprl 732 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u ) ) ) ) ) )  ->  x  e.  CC )
185 eqid 2283 . . . . . . 7  |-  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) )  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u ) ) ) )
186182, 183, 184, 185expgrowthi 27550 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u ) ) ) ) ) )  -> 
( S  _D  (
u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u
) ) ) ) )  =  ( ( S  X.  { K } )  o F  x.  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) ) ) )
1871863impb 1147 . . . . 5  |-  ( (
ph  /\  x  e.  CC  /\  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u
) ) ) ) )  ->  ( S  _D  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u ) ) ) ) )  =  ( ( S  X.  { K } )  o F  x.  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) ) ) )
188 oveq2 5866 . . . . . . 7  |-  ( Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) )  -> 
( S  _D  Y
)  =  ( S  _D  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) ) ) )
189 oveq2 5866 . . . . . . 7  |-  ( Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) )  -> 
( ( S  X.  { K } )  o F  x.  Y )  =  ( ( S  X.  { K }
)  o F  x.  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u ) ) ) ) ) )
190188, 189eqeq12d 2297 . . . . . 6  |-  ( Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) )  -> 
( ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y )  <->  ( S  _D  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u ) ) ) ) )  =  ( ( S  X.  { K } )  o F  x.  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) ) ) ) )
1911903ad2ant3 978 . . . . 5  |-  ( (
ph  /\  x  e.  CC  /\  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u
) ) ) ) )  ->  ( ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y )  <-> 
( S  _D  (
u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u
) ) ) ) )  =  ( ( S  X.  { K } )  o F  x.  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) ) ) ) )
192187, 191mpbird 223 . . . 4  |-  ( (
ph  /\  x  e.  CC  /\  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u
) ) ) ) )  ->  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )
193192rexlimdv3a 2669 . . 3  |-  ( ph  ->  ( E. x  e.  CC  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u
) ) ) )  ->  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) ) )
194181, 193impbid 183 . 2  |-  ( ph  ->  ( ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y )  <->  E. x  e.  CC  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u
) ) ) ) ) )
195 oveq2 5866 . . . . . . . 8  |-  ( u  =  t  ->  ( K  x.  u )  =  ( K  x.  t ) )
196195fveq2d 5529 . . . . . . 7  |-  ( u  =  t  ->  ( exp `  ( K  x.  u ) )  =  ( exp `  ( K  x.  t )
) )
197196oveq2d 5874 . . . . . 6  |-  ( u  =  t  ->  (
x  x.  ( exp `  ( K  x.  u
) ) )  =  ( x  x.  ( exp `  ( K  x.  t ) ) ) )
198197cbvmptv 4111 . . . . 5  |-  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) )  =  ( t  e.  S  |->  ( x  x.  ( exp `  ( K  x.  t ) ) ) )
199 oveq1 5865 . . . . . 6  |-  ( x  =  c  ->  (
x  x.  ( exp `  ( K  x.  t
) ) )  =  ( c  x.  ( exp `  ( K  x.  t ) ) ) )
200199mpteq2dv 4107 . . . . 5  |-  ( x  =  c  ->  (
t  e.  S  |->  ( x  x.  ( exp `  ( K  x.  t
) ) ) )  =  ( t  e.  S  |->  ( c  x.  ( exp `  ( K  x.  t )
) ) ) )
201198, 200syl5eq 2327 . . . 4  |-  ( x  =  c  ->  (
u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u
) ) ) )  =  ( t  e.  S  |->  ( c  x.  ( exp `  ( K  x.  t )
) ) ) )
202201eqeq2d 2294 . . 3  |-  ( x  =  c  ->  ( Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) )  <->  Y  =  ( t  e.  S  |->  ( c  x.  ( exp `  ( K  x.  t ) ) ) ) ) )
203202cbvrexv 2765 . 2  |-  ( E. x  e.  CC  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) )  <->  E. c  e.  CC  Y  =  ( t  e.  S  |->  ( c  x.  ( exp `  ( K  x.  t
) ) ) ) )
204194, 203syl6bb 252 1  |-  ( ph  ->  ( ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y )  <->  E. c  e.  CC  Y  =  ( t  e.  S  |->  ( c  x.  ( exp `  ( K  x.  t
) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   _Vcvv 2788    \ cdif 3149    C_ wss 3152   {csn 3640   {cpr 3641    e. cmpt 4077    X. cxp 4687   dom cdm 4689    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858    o Fcof 6076   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    - cmin 9037   -ucneg 9038    / cdiv 9423   expce 12343    _D cdv 19213
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-cmp 17114  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217
  Copyright terms: Public domain W3C validator