Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expgrowth Unicode version

Theorem expgrowth 27467
Description: Exponential growth and decay model. The derivative of a function y of variable t equals a constant k times y itself, iff y equals some constant C times the exponential of kt. This theorem and expgrowthi 27465 illustrate one of the simplest and most crucial classes of differential equations, equations that relate functions to their derivatives.

Section 6.3 of [Strang] p. 242 calls y' = ky "the most important differential equation in applied mathematics". In the field of population ecology it is known as the Malthusian growth model or exponential law, and C, k, and t correspond to initial population size, growth rate, and time respectively (https://en.wikipedia.org/wiki/Malthusian_growth_model); and in finance, the model appears in a similar role in continuous compounding with C as the initial amount of money. In exponential decay models, k is often expressed as the negative of a positive constant λ.

Here y' is given as  ( S  _D  Y
), C as  c, and ky as  ( ( S  X.  { K }
)  o F  x.  Y ).  ( S  X.  { K } ) is the constant function that maps any real or complex input to k and  o F  x. is multiplication as a function operation.

The leftward direction of the biconditional is as given in http://www.saylor.org/site/wp-content/uploads/2011/06/MA221-2.1.1.pdf pp. 1-2, which also notes the reverse direction ("While we will not prove this here, it turns out that these are the only functions that satisfy this equation."). The rightward direction is Theorem 5.1 of [LarsonHostetlerEdwards] p. 375 (which notes " C is the initial value of y, and k is the proportionality constant. Exponential growth occurs when k > 0, and exponential decay occurs when k < 0."); its proof here closely follows the proof of y' = y in https://proofwiki.org/wiki/Exponential_Growth_Equation/Special_Case.

Statements for this and expgrowthi 27465 formulated by Mario Carneiro. (Contributed by Steve Rodriguez, 24-Nov-2015.)

Hypotheses
Ref Expression
expgrowth.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
expgrowth.k  |-  ( ph  ->  K  e.  CC )
expgrowth.y  |-  ( ph  ->  Y : S --> CC )
expgrowth.dy  |-  ( ph  ->  dom  ( S  _D  Y )  =  S )
Assertion
Ref Expression
expgrowth  |-  ( ph  ->  ( ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y )  <->  E. c  e.  CC  Y  =  ( t  e.  S  |->  ( c  x.  ( exp `  ( K  x.  t
) ) ) ) ) )
Distinct variable groups:    t, c, K    S, c, t    Y, c
Allowed substitution hints:    ph( t, c)    Y( t)

Proof of Theorem expgrowth
Dummy variables  u  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expgrowth.s . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  S  e.  { RR ,  CC } )
2 cnex 9060 . . . . . . . . . . . . . . . . . . 19  |-  CC  e.  _V
32prid2 3905 . . . . . . . . . . . . . . . . . 18  |-  CC  e.  { RR ,  CC }
43a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  CC  e.  { RR ,  CC } )
5 expgrowth.k . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  K  e.  CC )
6 recnprss 19779 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
71, 6syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  S  C_  CC )
87sseld 3339 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( u  e.  S  ->  u  e.  CC ) )
9 mulcl 9063 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  CC  /\  u  e.  CC )  ->  ( K  x.  u
)  e.  CC )
105, 8, 9ee12an 1372 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( u  e.  S  ->  ( K  x.  u
)  e.  CC ) )
1110imp 419 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  u  e.  S )  ->  ( K  x.  u )  e.  CC )
1211negcld 9387 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  u  e.  S )  ->  -u ( K  x.  u )  e.  CC )
135negcld 9387 . . . . . . . . . . . . . . . . . 18  |-  ( ph  -> 
-u K  e.  CC )
1413adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  u  e.  S )  ->  -u K  e.  CC )
15 efcl 12673 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  CC  ->  ( exp `  y )  e.  CC )
1615adantl 453 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  CC )  ->  ( exp `  y )  e.  CC )
175adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  u  e.  S )  ->  K  e.  CC )
188imp 419 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  u  e.  S )  ->  u  e.  CC )
19 ax-1cn 9037 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  CC
2019a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  u  e.  S )  ->  1  e.  CC )
211dvmptid 19831 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( S  _D  (
u  e.  S  |->  u ) )  =  ( u  e.  S  |->  1 ) )
221, 18, 20, 21, 5dvmptcmul 19838 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( S  _D  (
u  e.  S  |->  ( K  x.  u ) ) )  =  ( u  e.  S  |->  ( K  x.  1 ) ) )
235mulid1d 9094 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( K  x.  1 )  =  K )
2423mpteq2dv 4288 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( u  e.  S  |->  ( K  x.  1 ) )  =  ( u  e.  S  |->  K ) )
2522, 24eqtrd 2467 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( S  _D  (
u  e.  S  |->  ( K  x.  u ) ) )  =  ( u  e.  S  |->  K ) )
261, 11, 17, 25dvmptneg 19840 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( S  _D  (
u  e.  S  |->  -u ( K  x.  u
) ) )  =  ( u  e.  S  |-> 
-u K ) )
27 dvef 19852 . . . . . . . . . . . . . . . . . . 19  |-  ( CC 
_D  exp )  =  exp
28 eff 12672 . . . . . . . . . . . . . . . . . . . . . 22  |-  exp : CC
--> CC
29 ffn 5582 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( exp
: CC --> CC  ->  exp 
Fn  CC )
3028, 29ax-mp 8 . . . . . . . . . . . . . . . . . . . . 21  |-  exp  Fn  CC
31 dffn5 5763 . . . . . . . . . . . . . . . . . . . . 21  |-  ( exp 
Fn  CC  <->  exp  =  ( y  e.  CC  |->  ( exp `  y ) ) )
3230, 31mpbi 200 . . . . . . . . . . . . . . . . . . . 20  |-  exp  =  ( y  e.  CC  |->  ( exp `  y ) )
3332oveq2i 6083 . . . . . . . . . . . . . . . . . . 19  |-  ( CC 
_D  exp )  =  ( CC  _D  ( y  e.  CC  |->  ( exp `  y ) ) )
3427, 33, 323eqtr3i 2463 . . . . . . . . . . . . . . . . . 18  |-  ( CC 
_D  ( y  e.  CC  |->  ( exp `  y
) ) )  =  ( y  e.  CC  |->  ( exp `  y ) )
3534a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( CC  _D  (
y  e.  CC  |->  ( exp `  y ) ) )  =  ( y  e.  CC  |->  ( exp `  y ) ) )
36 fveq2 5719 . . . . . . . . . . . . . . . . 17  |-  ( y  =  -u ( K  x.  u )  ->  ( exp `  y )  =  ( exp `  -u ( K  x.  u )
) )
371, 4, 12, 14, 16, 16, 26, 35, 36, 36dvmptco 19846 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( S  _D  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) ) )
3837oveq2d 6088 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Y  o F  x.  ( S  _D  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( Y  o F  x.  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) ) ) )
39 expgrowth.y . . . . . . . . . . . . . . . 16  |-  ( ph  ->  Y : S --> CC )
40 efcl 12673 . . . . . . . . . . . . . . . . . . . 20  |-  ( -u ( K  x.  u
)  e.  CC  ->  ( exp `  -u ( K  x.  u )
)  e.  CC )
4112, 40syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  u  e.  S )  ->  ( exp `  -u ( K  x.  u ) )  e.  CC )
4241, 14mulcld 9097 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  u  e.  S )  ->  (
( exp `  -u ( K  x.  u )
)  x.  -u K
)  e.  CC )
43 eqid 2435 . . . . . . . . . . . . . . . . . 18  |-  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) )  =  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) )
4442, 43fmptd 5884 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) ) : S --> CC )
4537feq1d 5571 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( S  _D  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) : S --> CC  <->  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) ) : S --> CC ) )
4644, 45mpbird 224 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( S  _D  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) : S --> CC )
47 mulcom 9065 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  =  ( y  x.  x ) )
4847adantl 453 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  =  ( y  x.  x ) )
491, 39, 46, 48caofcom 6327 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Y  o F  x.  ( S  _D  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( S  _D  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  o F  x.  Y ) )
5038, 49eqtr3d 2469 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( Y  o F  x.  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u ) )  x.  -u K ) ) )  =  ( ( S  _D  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  o F  x.  Y ) )
5150oveq2d 6088 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( S  _D  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( Y  o F  x.  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) ) ) )  =  ( ( ( S  _D  Y )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  o F  +  ( ( S  _D  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  x.  Y ) ) )
52 fconst6g 5623 . . . . . . . . . . . . . . . . . 18  |-  ( -u K  e.  CC  ->  ( S  X.  { -u K } ) : S --> CC )
5313, 52syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( S  X.  { -u K } ) : S --> CC )
54 eqid 2435 . . . . . . . . . . . . . . . . . 18  |-  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) )  =  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) )
5541, 54fmptd 5884 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) : S --> CC )
561, 53, 55, 48caofcom 6327 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( S  X.  { -u K } )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) )  o F  x.  ( S  X.  { -u K } ) ) )
57 eqidd 2436 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) )  =  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )
58 fconstmpt 4912 . . . . . . . . . . . . . . . . . 18  |-  ( S  X.  { -u K } )  =  ( u  e.  S  |->  -u K )
5958a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( S  X.  { -u K } )  =  ( u  e.  S  |-> 
-u K ) )
601, 41, 14, 57, 59offval2 6313 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) )  o F  x.  ( S  X.  { -u K } ) )  =  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) ) )
6156, 60eqtrd 2467 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( S  X.  { -u K } )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) ) )
6261oveq2d 6088 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( Y  o F  x.  ( ( S  X.  { -u K } )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( Y  o F  x.  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) ) ) )
6362oveq2d 6088 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( S  _D  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( Y  o F  x.  ( ( S  X.  { -u K } )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) ) )  =  ( ( ( S  _D  Y
)  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  o F  +  ( Y  o F  x.  (
u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) ) ) ) )
64 expgrowth.dy . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  ( S  _D  Y )  =  S )
6537dmeqd 5063 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  ( S  _D  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  dom  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u ) )  x.  -u K ) ) )
66 fdm 5586 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) ) : S --> CC  ->  dom  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u )
)  x.  -u K
) )  =  S )
6744, 66syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  ( u  e.  S  |->  ( ( exp `  -u ( K  x.  u ) )  x.  -u K ) )  =  S )
6865, 67eqtrd 2467 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  ( S  _D  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  S )
691, 39, 55, 64, 68dvmulf 19817 . . . . . . . . . . . . 13  |-  ( ph  ->  ( S  _D  ( Y  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( S  _D  Y )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  o F  +  ( ( S  _D  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  x.  Y ) ) )
7051, 63, 693eqtr4rd 2478 . . . . . . . . . . . 12  |-  ( ph  ->  ( S  _D  ( Y  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( S  _D  Y )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  o F  +  ( Y  o F  x.  (
( S  X.  { -u K } )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) ) ) )
71 ofmul12 27457 . . . . . . . . . . . . . 14  |-  ( ( ( S  e.  { RR ,  CC }  /\  Y : S --> CC )  /\  ( ( S  X.  { -u K } ) : S --> CC  /\  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) : S --> CC ) )  ->  ( Y  o F  x.  (
( S  X.  { -u K } )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) )  =  ( ( S  X.  { -u K } )  o F  x.  ( Y  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) ) )
721, 39, 53, 55, 71syl22anc 1185 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Y  o F  x.  ( ( S  X.  { -u K } )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( S  X.  { -u K } )  o F  x.  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) ) )
7372oveq2d 6088 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( S  _D  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( Y  o F  x.  ( ( S  X.  { -u K } )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) ) )  =  ( ( ( S  _D  Y
)  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  o F  +  ( ( S  X.  { -u K } )  o F  x.  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) ) ) )
7470, 73eqtrd 2467 . . . . . . . . . . 11  |-  ( ph  ->  ( S  _D  ( Y  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( S  _D  Y )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  o F  +  ( ( S  X.  { -u K } )  o F  x.  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) ) ) )
75 oveq1 6079 . . . . . . . . . . . 12  |-  ( ( S  _D  Y )  =  ( ( S  X.  { K }
)  o F  x.  Y )  ->  (
( S  _D  Y
)  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( ( ( S  X.  { K }
)  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )
7675oveq1d 6087 . . . . . . . . . . 11  |-  ( ( S  _D  Y )  =  ( ( S  X.  { K }
)  o F  x.  Y )  ->  (
( ( S  _D  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  o F  +  ( ( S  X.  { -u K } )  o F  x.  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) ) )  =  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( ( S  X.  { -u K } )  o F  x.  ( Y  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) ) ) )
7774, 76sylan9eq 2487 . . . . . . . . . 10  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( ( S  X.  { -u K } )  o F  x.  ( Y  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) ) ) )
78 mulass 9067 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  x.  y
)  x.  z )  =  ( x  x.  ( y  x.  z
) ) )
7978adantl 453 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) )  -> 
( ( x  x.  y )  x.  z
)  =  ( x  x.  ( y  x.  z ) ) )
801, 53, 39, 55, 79caofass 6329 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( S  X.  { -u K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  =  ( ( S  X.  { -u K } )  o F  x.  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) ) )
8180oveq2d 6088 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( ( ( S  X.  { -u K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) )  =  ( ( ( ( S  X.  { K }
)  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  o F  +  ( ( S  X.  { -u K } )  o F  x.  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) ) ) )
8281eqeq2d 2446 . . . . . . . . . . 11  |-  ( ph  ->  ( ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( ( ( S  X.  { -u K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) )  <->  ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( ( S  X.  { -u K } )  o F  x.  ( Y  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) ) ) ) )
8382adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  ( ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) )  =  ( ( ( ( S  X.  { K }
)  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  o F  +  ( ( ( S  X.  { -u K } )  o F  x.  Y )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  <-> 
( S  _D  ( Y  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( ( S  X.  { -u K } )  o F  x.  ( Y  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) ) ) ) )
8477, 83mpbird 224 . . . . . . . . 9  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( ( ( S  X.  { -u K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) ) )
85 mulcl 9063 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
8685adantl 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  e.  CC )
87 fconst6g 5623 . . . . . . . . . . . . . 14  |-  ( K  e.  CC  ->  ( S  X.  { K }
) : S --> CC )
885, 87syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( S  X.  { K } ) : S --> CC )
89 inidm 3542 . . . . . . . . . . . . 13  |-  ( S  i^i  S )  =  S
9086, 88, 39, 1, 1, 89off 6311 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( S  X.  { K } )  o F  x.  Y ) : S --> CC )
9186, 53, 39, 1, 1, 89off 6311 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( S  X.  { -u K } )  o F  x.  Y
) : S --> CC )
92 adddir 9072 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  +  y )  x.  z )  =  ( ( x  x.  z )  +  ( y  x.  z
) ) )
9392adantl 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) )  -> 
( ( x  +  y )  x.  z
)  =  ( ( x  x.  z )  +  ( y  x.  z ) ) )
941, 55, 90, 91, 93caofdir 6332 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  +  ( ( S  X.  { -u K } )  o F  x.  Y ) )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( ( ( S  X.  { -u K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) ) )
9594eqeq2d 2446 . . . . . . . . . 10  |-  ( ph  ->  ( ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  +  ( ( S  X.  { -u K } )  o F  x.  Y ) )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  <->  ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( ( ( S  X.  { -u K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) ) ) )
9695adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  ( ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) )  =  ( ( ( ( S  X.  { K }
)  o F  x.  Y )  o F  +  ( ( S  X.  { -u K } )  o F  x.  Y ) )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  <->  ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  +  ( ( ( S  X.  { -u K } )  o F  x.  Y )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) ) ) )
9784, 96mpbird 224 . . . . . . . 8  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  +  ( ( S  X.  { -u K } )  o F  x.  Y ) )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )
98 ofnegsub 9987 . . . . . . . . . . . . 13  |-  ( ( S  e.  { RR ,  CC }  /\  (
( S  X.  { K } )  o F  x.  Y ) : S --> CC  /\  (
( S  X.  { K } )  o F  x.  Y ) : S --> CC )  -> 
( ( ( S  X.  { K }
)  o F  x.  Y )  o F  +  ( ( S  X.  { -u 1 } )  o F  x.  ( ( S  X.  { K }
)  o F  x.  Y ) ) )  =  ( ( ( S  X.  { K } )  o F  x.  Y )  o F  -  ( ( S  X.  { K } )  o F  x.  Y ) ) )
991, 90, 90, 98syl3anc 1184 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( S  X.  { K }
)  o F  x.  Y )  o F  +  ( ( S  X.  { -u 1 } )  o F  x.  ( ( S  X.  { K }
)  o F  x.  Y ) ) )  =  ( ( ( S  X.  { K } )  o F  x.  Y )  o F  -  ( ( S  X.  { K } )  o F  x.  Y ) ) )
100 neg1cn 10056 . . . . . . . . . . . . . . . . 17  |-  -u 1  e.  CC
101100fconst6 5624 . . . . . . . . . . . . . . . 16  |-  ( S  X.  { -u 1 } ) : S --> CC
102101a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( S  X.  { -u 1 } ) : S --> CC )
1031, 102, 88, 39, 79caofass 6329 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( S  X.  { -u 1 } )  o F  x.  ( S  X.  { K } ) )  o F  x.  Y
)  =  ( ( S  X.  { -u
1 } )  o F  x.  ( ( S  X.  { K } )  o F  x.  Y ) ) )
104100a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  -> 
-u 1  e.  CC )
1051, 104, 5ofc12 6320 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( S  X.  { -u 1 } )  o F  x.  ( S  X.  { K }
) )  =  ( S  X.  { (
-u 1  x.  K
) } ) )
1065mulm1d 9474 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( -u 1  x.  K )  =  -u K )
107106sneqd 3819 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  { ( -u 1  x.  K ) }  =  { -u K } )
108107xpeq2d 4893 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( S  X.  {
( -u 1  x.  K
) } )  =  ( S  X.  { -u K } ) )
109105, 108eqtrd 2467 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( S  X.  { -u 1 } )  o F  x.  ( S  X.  { K }
) )  =  ( S  X.  { -u K } ) )
110109oveq1d 6087 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( S  X.  { -u 1 } )  o F  x.  ( S  X.  { K } ) )  o F  x.  Y
)  =  ( ( S  X.  { -u K } )  o F  x.  Y ) )
111103, 110eqtr3d 2469 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( S  X.  { -u 1 } )  o F  x.  (
( S  X.  { K } )  o F  x.  Y ) )  =  ( ( S  X.  { -u K } )  o F  x.  Y ) )
112111oveq2d 6088 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( S  X.  { K }
)  o F  x.  Y )  o F  +  ( ( S  X.  { -u 1 } )  o F  x.  ( ( S  X.  { K }
)  o F  x.  Y ) ) )  =  ( ( ( S  X.  { K } )  o F  x.  Y )  o F  +  ( ( S  X.  { -u K } )  o F  x.  Y ) ) )
113 ofsubid 27456 . . . . . . . . . . . . 13  |-  ( ( S  e.  { RR ,  CC }  /\  (
( S  X.  { K } )  o F  x.  Y ) : S --> CC )  -> 
( ( ( S  X.  { K }
)  o F  x.  Y )  o F  -  ( ( S  X.  { K }
)  o F  x.  Y ) )  =  ( S  X.  {
0 } ) )
1141, 90, 113syl2anc 643 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( S  X.  { K }
)  o F  x.  Y )  o F  -  ( ( S  X.  { K }
)  o F  x.  Y ) )  =  ( S  X.  {
0 } ) )
11599, 112, 1143eqtr3d 2475 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( S  X.  { K }
)  o F  x.  Y )  o F  +  ( ( S  X.  { -u K } )  o F  x.  Y ) )  =  ( S  X.  { 0 } ) )
116115oveq1d 6087 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  +  ( ( S  X.  { -u K } )  o F  x.  Y ) )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( ( S  X.  { 0 } )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )
117116eqeq2d 2446 . . . . . . . . 9  |-  ( ph  ->  ( ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( ( ( S  X.  { K } )  o F  x.  Y )  o F  +  ( ( S  X.  { -u K } )  o F  x.  Y ) )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  <->  ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( S  X.  { 0 } )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) ) )
118117adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  ( ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) )  =  ( ( ( ( S  X.  { K }
)  o F  x.  Y )  o F  +  ( ( S  X.  { -u K } )  o F  x.  Y ) )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  <->  ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( S  X.  { 0 } )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) ) )
11997, 118mpbid 202 . . . . . . 7  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( ( S  X.  { 0 } )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )
120 0cn 9073 . . . . . . . . . 10  |-  0  e.  CC
121120a1i 11 . . . . . . . . 9  |-  ( ph  ->  0  e.  CC )
122 mul02 9233 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
0  x.  x )  =  0 )
123122adantl 453 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  ( 0  x.  x )  =  0 )
1241, 55, 121, 121, 123caofid2 6326 . . . . . . . 8  |-  ( ph  ->  ( ( S  X.  { 0 } )  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( S  X.  {
0 } ) )
125124adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  ( ( S  X.  { 0 } )  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( S  X.  {
0 } ) )
126119, 125eqtrd 2467 . . . . . 6  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  ( S  X.  { 0 } ) )
1271adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  S  e.  { RR ,  CC } )
12886, 39, 55, 1, 1, 89off 6311 . . . . . . . 8  |-  ( ph  ->  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) : S --> CC )
129128adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) : S --> CC )
130126dmeqd 5063 . . . . . . . 8  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  dom  ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  dom  ( S  X.  { 0 } ) )
131120fconst6 5624 . . . . . . . . 9  |-  ( S  X.  { 0 } ) : S --> CC
132131fdmi 5587 . . . . . . . 8  |-  dom  ( S  X.  { 0 } )  =  S
133130, 132syl6eq 2483 . . . . . . 7  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  dom  ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )  =  S )
134127, 129, 133dvconstbi 27466 . . . . . 6  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  ( ( S  _D  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) ) )  =  ( S  X.  { 0 } )  <->  E. x  e.  CC  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  =  ( S  X.  { x }
) ) )
135126, 134mpbid 202 . . . . 5  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  E. x  e.  CC  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( S  X.  {
x } ) )
136 oveq1 6079 . . . . . . . . . 10  |-  ( ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( S  X.  {
x } )  -> 
( ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  / 
( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( ( S  X.  { x } )  o F  /  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) )
137 efne0 12686 . . . . . . . . . . . . . . 15  |-  ( -u ( K  x.  u
)  e.  CC  ->  ( exp `  -u ( K  x.  u )
)  =/=  0 )
138 eldifsn 3919 . . . . . . . . . . . . . . 15  |-  ( ( exp `  -u ( K  x.  u )
)  e.  ( CC 
\  { 0 } )  <->  ( ( exp `  -u ( K  x.  u ) )  e.  CC  /\  ( exp `  -u ( K  x.  u ) )  =/=  0 ) )
13940, 137, 138sylanbrc 646 . . . . . . . . . . . . . 14  |-  ( -u ( K  x.  u
)  e.  CC  ->  ( exp `  -u ( K  x.  u )
)  e.  ( CC 
\  { 0 } ) )
14012, 139syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  S )  ->  ( exp `  -u ( K  x.  u ) )  e.  ( CC  \  {
0 } ) )
141140, 54fmptd 5884 . . . . . . . . . . . 12  |-  ( ph  ->  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) : S --> ( CC  \  { 0 } ) )
142 ofdivcan4 27459 . . . . . . . . . . . 12  |-  ( ( S  e.  { RR ,  CC }  /\  Y : S --> CC  /\  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) : S --> ( CC  \  { 0 } ) )  -> 
( ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  / 
( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  Y )
1431, 39, 141, 142syl3anc 1184 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  o F  / 
( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  Y )
144143eqeq1d 2443 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( Y  o F  x.  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  o F  /  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  =  ( ( S  X.  { x } )  o F  /  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  <->  Y  =  ( ( S  X.  { x } )  o F  /  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) ) )
145136, 144syl5ib 211 . . . . . . . . 9  |-  ( ph  ->  ( ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  =  ( S  X.  { x }
)  ->  Y  =  ( ( S  X.  { x } )  o F  /  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) ) )
146145adantr 452 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( S  X.  {
x } )  ->  Y  =  ( ( S  X.  { x }
)  o F  / 
( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) ) ) )
147 vex 2951 . . . . . . . . . . . . 13  |-  x  e. 
_V
148147a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  S )  ->  x  e.  _V )
149 ovex 6097 . . . . . . . . . . . . 13  |-  ( 1  /  ( exp `  ( K  x.  u )
) )  e.  _V
150149a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  S )  ->  (
1  /  ( exp `  ( K  x.  u
) ) )  e. 
_V )
151 fconstmpt 4912 . . . . . . . . . . . . 13  |-  ( S  X.  { x }
)  =  ( u  e.  S  |->  x )
152151a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  ( S  X.  {
x } )  =  ( u  e.  S  |->  x ) )
153 efneg 12687 . . . . . . . . . . . . . 14  |-  ( ( K  x.  u )  e.  CC  ->  ( exp `  -u ( K  x.  u ) )  =  ( 1  /  ( exp `  ( K  x.  u ) ) ) )
15411, 153syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  S )  ->  ( exp `  -u ( K  x.  u ) )  =  ( 1  /  ( exp `  ( K  x.  u ) ) ) )
155154mpteq2dva 4287 . . . . . . . . . . . 12  |-  ( ph  ->  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) )  =  ( u  e.  S  |->  ( 1  /  ( exp `  ( K  x.  u
) ) ) ) )
1561, 148, 150, 152, 155offval2 6313 . . . . . . . . . . 11  |-  ( ph  ->  ( ( S  X.  { x } )  o F  /  (
u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( u  e.  S  |->  ( x  /  (
1  /  ( exp `  ( K  x.  u
) ) ) ) ) )
157156adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( S  X.  { x } )  o F  /  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( u  e.  S  |->  ( x  /  (
1  /  ( exp `  ( K  x.  u
) ) ) ) ) )
158 efcl 12673 . . . . . . . . . . . . . . . . 17  |-  ( ( K  x.  u )  e.  CC  ->  ( exp `  ( K  x.  u ) )  e.  CC )
159 efne0 12686 . . . . . . . . . . . . . . . . 17  |-  ( ( K  x.  u )  e.  CC  ->  ( exp `  ( K  x.  u ) )  =/=  0 )
160158, 159jca 519 . . . . . . . . . . . . . . . 16  |-  ( ( K  x.  u )  e.  CC  ->  (
( exp `  ( K  x.  u )
)  e.  CC  /\  ( exp `  ( K  x.  u ) )  =/=  0 ) )
16111, 160syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  u  e.  S )  ->  (
( exp `  ( K  x.  u )
)  e.  CC  /\  ( exp `  ( K  x.  u ) )  =/=  0 ) )
162 ax-1ne0 9048 . . . . . . . . . . . . . . . . 17  |-  1  =/=  0
16319, 162pm3.2i 442 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  CC  /\  1  =/=  0 )
164 divdiv2 9715 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( 1  e.  CC  /\  1  =/=  0 )  /\  ( ( exp `  ( K  x.  u
) )  e.  CC  /\  ( exp `  ( K  x.  u )
)  =/=  0 ) )  ->  ( x  /  ( 1  / 
( exp `  ( K  x.  u )
) ) )  =  ( ( x  x.  ( exp `  ( K  x.  u )
) )  /  1
) )
165163, 164mp3an2 1267 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  ( ( exp `  ( K  x.  u )
)  e.  CC  /\  ( exp `  ( K  x.  u ) )  =/=  0 ) )  ->  ( x  / 
( 1  /  ( exp `  ( K  x.  u ) ) ) )  =  ( ( x  x.  ( exp `  ( K  x.  u
) ) )  / 
1 ) )
166161, 165sylan2 461 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( ph  /\  u  e.  S ) )  -> 
( x  /  (
1  /  ( exp `  ( K  x.  u
) ) ) )  =  ( ( x  x.  ( exp `  ( K  x.  u )
) )  /  1
) )
16711, 158syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  u  e.  S )  ->  ( exp `  ( K  x.  u ) )  e.  CC )
168 mulcl 9063 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( exp `  ( K  x.  u ) )  e.  CC )  -> 
( x  x.  ( exp `  ( K  x.  u ) ) )  e.  CC )
169167, 168sylan2 461 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  ( ph  /\  u  e.  S ) )  -> 
( x  x.  ( exp `  ( K  x.  u ) ) )  e.  CC )
170169div1d 9771 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( ph  /\  u  e.  S ) )  -> 
( ( x  x.  ( exp `  ( K  x.  u )
) )  /  1
)  =  ( x  x.  ( exp `  ( K  x.  u )
) ) )
171166, 170eqtrd 2467 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  ( ph  /\  u  e.  S ) )  -> 
( x  /  (
1  /  ( exp `  ( K  x.  u
) ) ) )  =  ( x  x.  ( exp `  ( K  x.  u )
) ) )
172171ancoms 440 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  u  e.  S )  /\  x  e.  CC )  ->  (
x  /  ( 1  /  ( exp `  ( K  x.  u )
) ) )  =  ( x  x.  ( exp `  ( K  x.  u ) ) ) )
173172an32s 780 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  CC )  /\  u  e.  S )  ->  (
x  /  ( 1  /  ( exp `  ( K  x.  u )
) ) )  =  ( x  x.  ( exp `  ( K  x.  u ) ) ) )
174173mpteq2dva 4287 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  CC )  ->  ( u  e.  S  |->  ( x  /  ( 1  / 
( exp `  ( K  x.  u )
) ) ) )  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) ) )
175157, 174eqtrd 2467 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( S  X.  { x } )  o F  /  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u ) ) ) ) )
176175eqeq2d 2446 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  ( Y  =  ( ( S  X.  { x }
)  o F  / 
( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  <->  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u ) ) ) ) ) )
177146, 176sylibd 206 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u )
) ) )  =  ( S  X.  {
x } )  ->  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) ) ) )
178177reximdva 2810 . . . . . 6  |-  ( ph  ->  ( E. x  e.  CC  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  =  ( S  X.  { x }
)  ->  E. x  e.  CC  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u
) ) ) ) ) )
179178adantr 452 . . . . 5  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  ( E. x  e.  CC  ( Y  o F  x.  ( u  e.  S  |->  ( exp `  -u ( K  x.  u ) ) ) )  =  ( S  X.  { x }
)  ->  E. x  e.  CC  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u
) ) ) ) ) )
180135, 179mpd 15 . . . 4  |-  ( (
ph  /\  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )  ->  E. x  e.  CC  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) ) )
181180ex 424 . . 3  |-  ( ph  ->  ( ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y )  ->  E. x  e.  CC  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) ) ) )
1821adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u ) ) ) ) ) )  ->  S  e.  { RR ,  CC } )
1835adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u ) ) ) ) ) )  ->  K  e.  CC )
184 simprl 733 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u ) ) ) ) ) )  ->  x  e.  CC )
185 eqid 2435 . . . . . . 7  |-  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) )  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u ) ) ) )
186182, 183, 184, 185expgrowthi 27465 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u ) ) ) ) ) )  -> 
( S  _D  (
u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u
) ) ) ) )  =  ( ( S  X.  { K } )  o F  x.  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) ) ) )
1871863impb 1149 . . . . 5  |-  ( (
ph  /\  x  e.  CC  /\  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u
) ) ) ) )  ->  ( S  _D  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u ) ) ) ) )  =  ( ( S  X.  { K } )  o F  x.  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) ) ) )
188 oveq2 6080 . . . . . . 7  |-  ( Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) )  -> 
( S  _D  Y
)  =  ( S  _D  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) ) ) )
189 oveq2 6080 . . . . . . 7  |-  ( Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) )  -> 
( ( S  X.  { K } )  o F  x.  Y )  =  ( ( S  X.  { K }
)  o F  x.  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u ) ) ) ) ) )
190188, 189eqeq12d 2449 . . . . . 6  |-  ( Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) )  -> 
( ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y )  <->  ( S  _D  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u ) ) ) ) )  =  ( ( S  X.  { K } )  o F  x.  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) ) ) ) )
1911903ad2ant3 980 . . . . 5  |-  ( (
ph  /\  x  e.  CC  /\  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u
) ) ) ) )  ->  ( ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y )  <-> 
( S  _D  (
u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u
) ) ) ) )  =  ( ( S  X.  { K } )  o F  x.  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) ) ) ) )
192187, 191mpbird 224 . . . 4  |-  ( (
ph  /\  x  e.  CC  /\  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u
) ) ) ) )  ->  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) )
193192rexlimdv3a 2824 . . 3  |-  ( ph  ->  ( E. x  e.  CC  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u
) ) ) )  ->  ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y ) ) )
194181, 193impbid 184 . 2  |-  ( ph  ->  ( ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y )  <->  E. x  e.  CC  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u
) ) ) ) ) )
195 oveq2 6080 . . . . . . . 8  |-  ( u  =  t  ->  ( K  x.  u )  =  ( K  x.  t ) )
196195fveq2d 5723 . . . . . . 7  |-  ( u  =  t  ->  ( exp `  ( K  x.  u ) )  =  ( exp `  ( K  x.  t )
) )
197196oveq2d 6088 . . . . . 6  |-  ( u  =  t  ->  (
x  x.  ( exp `  ( K  x.  u
) ) )  =  ( x  x.  ( exp `  ( K  x.  t ) ) ) )
198197cbvmptv 4292 . . . . 5  |-  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) )  =  ( t  e.  S  |->  ( x  x.  ( exp `  ( K  x.  t ) ) ) )
199 oveq1 6079 . . . . . 6  |-  ( x  =  c  ->  (
x  x.  ( exp `  ( K  x.  t
) ) )  =  ( c  x.  ( exp `  ( K  x.  t ) ) ) )
200199mpteq2dv 4288 . . . . 5  |-  ( x  =  c  ->  (
t  e.  S  |->  ( x  x.  ( exp `  ( K  x.  t
) ) ) )  =  ( t  e.  S  |->  ( c  x.  ( exp `  ( K  x.  t )
) ) ) )
201198, 200syl5eq 2479 . . . 4  |-  ( x  =  c  ->  (
u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u
) ) ) )  =  ( t  e.  S  |->  ( c  x.  ( exp `  ( K  x.  t )
) ) ) )
202201eqeq2d 2446 . . 3  |-  ( x  =  c  ->  ( Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) )  <->  Y  =  ( t  e.  S  |->  ( c  x.  ( exp `  ( K  x.  t ) ) ) ) ) )
203202cbvrexv 2925 . 2  |-  ( E. x  e.  CC  Y  =  ( u  e.  S  |->  ( x  x.  ( exp `  ( K  x.  u )
) ) )  <->  E. c  e.  CC  Y  =  ( t  e.  S  |->  ( c  x.  ( exp `  ( K  x.  t
) ) ) ) )
204194, 203syl6bb 253 1  |-  ( ph  ->  ( ( S  _D  Y )  =  ( ( S  X.  { K } )  o F  x.  Y )  <->  E. c  e.  CC  Y  =  ( t  e.  S  |->  ( c  x.  ( exp `  ( K  x.  t
) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698   _Vcvv 2948    \ cdif 3309    C_ wss 3312   {csn 3806   {cpr 3807    e. cmpt 4258    X. cxp 4867   dom cdm 4869    Fn wfn 5440   -->wf 5441   ` cfv 5445  (class class class)co 6072    o Fcof 6294   CCcc 8977   RRcr 8978   0cc0 8979   1c1 8980    + caddc 8982    x. cmul 8984    - cmin 9280   -ucneg 9281    / cdiv 9666   expce 12652    _D cdv 19738
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056  ax-pre-sup 9057  ax-addf 9058  ax-mulf 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-of 6296  df-1st 6340  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-2o 6716  df-oadd 6719  df-er 6896  df-map 7011  df-pm 7012  df-ixp 7055  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-fi 7407  df-sup 7437  df-oi 7468  df-card 7815  df-cda 8037  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-2 10047  df-3 10048  df-4 10049  df-5 10050  df-6 10051  df-7 10052  df-8 10053  df-9 10054  df-10 10055  df-n0 10211  df-z 10272  df-dec 10372  df-uz 10478  df-q 10564  df-rp 10602  df-xneg 10699  df-xadd 10700  df-xmul 10701  df-ioo 10909  df-ico 10911  df-icc 10912  df-fz 11033  df-fzo 11124  df-fl 11190  df-seq 11312  df-exp 11371  df-fac 11555  df-bc 11582  df-hash 11607  df-shft 11870  df-cj 11892  df-re 11893  df-im 11894  df-sqr 12028  df-abs 12029  df-limsup 12253  df-clim 12270  df-rlim 12271  df-sum 12468  df-ef 12658  df-struct 13459  df-ndx 13460  df-slot 13461  df-base 13462  df-sets 13463  df-ress 13464  df-plusg 13530  df-mulr 13531  df-starv 13532  df-sca 13533  df-vsca 13534  df-tset 13536  df-ple 13537  df-ds 13539  df-unif 13540  df-hom 13541  df-cco 13542  df-rest 13638  df-topn 13639  df-topgen 13655  df-pt 13656  df-prds 13659  df-xrs 13714  df-0g 13715  df-gsum 13716  df-qtop 13721  df-imas 13722  df-xps 13724  df-mre 13799  df-mrc 13800  df-acs 13802  df-mnd 14678  df-submnd 14727  df-mulg 14803  df-cntz 15104  df-cmn 15402  df-psmet 16682  df-xmet 16683  df-met 16684  df-bl 16685  df-mopn 16686  df-fbas 16687  df-fg 16688  df-cnfld 16692  df-top 16951  df-bases 16953  df-topon 16954  df-topsp 16955  df-cld 17071  df-ntr 17072  df-cls 17073  df-nei 17150  df-lp 17188  df-perf 17189  df-cn 17279  df-cnp 17280  df-haus 17367  df-cmp 17438  df-tx 17582  df-hmeo 17775  df-fil 17866  df-fm 17958  df-flim 17959  df-flf 17960  df-xms 18338  df-ms 18339  df-tms 18340  df-cncf 18896  df-limc 19741  df-dv 19742
  Copyright terms: Public domain W3C validator