MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expmul Structured version   Unicode version

Theorem expmul 11418
Description: Product of exponents law for natural number exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 4-Jan-2006.)
Assertion
Ref Expression
expmul  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) )

Proof of Theorem expmul
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6082 . . . . . . 7  |-  ( j  =  0  ->  ( M  x.  j )  =  ( M  x.  0 ) )
21oveq2d 6090 . . . . . 6  |-  ( j  =  0  ->  ( A ^ ( M  x.  j ) )  =  ( A ^ ( M  x.  0 ) ) )
3 oveq2 6082 . . . . . 6  |-  ( j  =  0  ->  (
( A ^ M
) ^ j )  =  ( ( A ^ M ) ^
0 ) )
42, 3eqeq12d 2450 . . . . 5  |-  ( j  =  0  ->  (
( A ^ ( M  x.  j )
)  =  ( ( A ^ M ) ^ j )  <->  ( A ^ ( M  x.  0 ) )  =  ( ( A ^ M ) ^ 0 ) ) )
54imbi2d 308 . . . 4  |-  ( j  =  0  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  x.  j ) )  =  ( ( A ^ M ) ^ j
) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  x.  0 ) )  =  ( ( A ^ M ) ^ 0 ) ) ) )
6 oveq2 6082 . . . . . . 7  |-  ( j  =  k  ->  ( M  x.  j )  =  ( M  x.  k ) )
76oveq2d 6090 . . . . . 6  |-  ( j  =  k  ->  ( A ^ ( M  x.  j ) )  =  ( A ^ ( M  x.  k )
) )
8 oveq2 6082 . . . . . 6  |-  ( j  =  k  ->  (
( A ^ M
) ^ j )  =  ( ( A ^ M ) ^
k ) )
97, 8eqeq12d 2450 . . . . 5  |-  ( j  =  k  ->  (
( A ^ ( M  x.  j )
)  =  ( ( A ^ M ) ^ j )  <->  ( A ^ ( M  x.  k ) )  =  ( ( A ^ M ) ^ k
) ) )
109imbi2d 308 . . . 4  |-  ( j  =  k  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  x.  j ) )  =  ( ( A ^ M ) ^ j
) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  x.  k ) )  =  ( ( A ^ M ) ^ k
) ) ) )
11 oveq2 6082 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( M  x.  j )  =  ( M  x.  ( k  +  1 ) ) )
1211oveq2d 6090 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( A ^ ( M  x.  j ) )  =  ( A ^ ( M  x.  ( k  +  1 ) ) ) )
13 oveq2 6082 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ M
) ^ j )  =  ( ( A ^ M ) ^
( k  +  1 ) ) )
1412, 13eqeq12d 2450 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ ( M  x.  j )
)  =  ( ( A ^ M ) ^ j )  <->  ( A ^ ( M  x.  ( k  +  1 ) ) )  =  ( ( A ^ M ) ^ (
k  +  1 ) ) ) )
1514imbi2d 308 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  x.  j ) )  =  ( ( A ^ M ) ^ j
) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  x.  ( k  +  1 ) ) )  =  ( ( A ^ M ) ^ (
k  +  1 ) ) ) ) )
16 oveq2 6082 . . . . . . 7  |-  ( j  =  N  ->  ( M  x.  j )  =  ( M  x.  N ) )
1716oveq2d 6090 . . . . . 6  |-  ( j  =  N  ->  ( A ^ ( M  x.  j ) )  =  ( A ^ ( M  x.  N )
) )
18 oveq2 6082 . . . . . 6  |-  ( j  =  N  ->  (
( A ^ M
) ^ j )  =  ( ( A ^ M ) ^ N ) )
1917, 18eqeq12d 2450 . . . . 5  |-  ( j  =  N  ->  (
( A ^ ( M  x.  j )
)  =  ( ( A ^ M ) ^ j )  <->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) ) )
2019imbi2d 308 . . . 4  |-  ( j  =  N  ->  (
( ( A  e.  CC  /\  M  e. 
NN0 )  ->  ( A ^ ( M  x.  j ) )  =  ( ( A ^ M ) ^ j
) )  <->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) ) ) )
21 nn0cn 10224 . . . . . . . 8  |-  ( M  e.  NN0  ->  M  e.  CC )
2221mul01d 9258 . . . . . . 7  |-  ( M  e.  NN0  ->  ( M  x.  0 )  =  0 )
2322oveq2d 6090 . . . . . 6  |-  ( M  e.  NN0  ->  ( A ^ ( M  x.  0 ) )  =  ( A ^ 0 ) )
24 exp0 11379 . . . . . 6  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
2523, 24sylan9eqr 2490 . . . . 5  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  x.  0 ) )  =  1 )
26 expcl 11392 . . . . . 6  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ M
)  e.  CC )
27 exp0 11379 . . . . . 6  |-  ( ( A ^ M )  e.  CC  ->  (
( A ^ M
) ^ 0 )  =  1 )
2826, 27syl 16 . . . . 5  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( ( A ^ M ) ^ 0 )  =  1 )
2925, 28eqtr4d 2471 . . . 4  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  x.  0 ) )  =  ( ( A ^ M ) ^ 0 ) )
30 oveq1 6081 . . . . . . 7  |-  ( ( A ^ ( M  x.  k ) )  =  ( ( A ^ M ) ^
k )  ->  (
( A ^ ( M  x.  k )
)  x.  ( A ^ M ) )  =  ( ( ( A ^ M ) ^ k )  x.  ( A ^ M
) ) )
31 nn0cn 10224 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  k  e.  CC )
32 ax-1cn 9041 . . . . . . . . . . . . . 14  |-  1  e.  CC
33 adddi 9072 . . . . . . . . . . . . . 14  |-  ( ( M  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  ( M  x.  ( k  +  1 ) )  =  ( ( M  x.  k )  +  ( M  x.  1 ) ) )
3432, 33mp3an3 1268 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  k  e.  CC )  ->  ( M  x.  (
k  +  1 ) )  =  ( ( M  x.  k )  +  ( M  x.  1 ) ) )
35 mulid1 9081 . . . . . . . . . . . . . . 15  |-  ( M  e.  CC  ->  ( M  x.  1 )  =  M )
3635adantr 452 . . . . . . . . . . . . . 14  |-  ( ( M  e.  CC  /\  k  e.  CC )  ->  ( M  x.  1 )  =  M )
3736oveq2d 6090 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  k  e.  CC )  ->  ( ( M  x.  k )  +  ( M  x.  1 ) )  =  ( ( M  x.  k )  +  M ) )
3834, 37eqtrd 2468 . . . . . . . . . . . 12  |-  ( ( M  e.  CC  /\  k  e.  CC )  ->  ( M  x.  (
k  +  1 ) )  =  ( ( M  x.  k )  +  M ) )
3921, 31, 38syl2an 464 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  x.  (
k  +  1 ) )  =  ( ( M  x.  k )  +  M ) )
4039adantll 695 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( M  x.  ( k  +  1 ) )  =  ( ( M  x.  k
)  +  M ) )
4140oveq2d 6090 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( M  x.  (
k  +  1 ) ) )  =  ( A ^ ( ( M  x.  k )  +  M ) ) )
42 simpll 731 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  A  e.  CC )
43 nn0mulcl 10249 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  x.  k
)  e.  NN0 )
4443adantll 695 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( M  x.  k )  e.  NN0 )
45 simplr 732 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  M  e.  NN0 )
46 expadd 11415 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( M  x.  k
)  e.  NN0  /\  M  e.  NN0 )  -> 
( A ^ (
( M  x.  k
)  +  M ) )  =  ( ( A ^ ( M  x.  k ) )  x.  ( A ^ M ) ) )
4742, 44, 45, 46syl3anc 1184 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( ( M  x.  k )  +  M
) )  =  ( ( A ^ ( M  x.  k )
)  x.  ( A ^ M ) ) )
4841, 47eqtrd 2468 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A ^
( M  x.  (
k  +  1 ) ) )  =  ( ( A ^ ( M  x.  k )
)  x.  ( A ^ M ) ) )
49 expp1 11381 . . . . . . . . 9  |-  ( ( ( A ^ M
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^ M ) ^ (
k  +  1 ) )  =  ( ( ( A ^ M
) ^ k )  x.  ( A ^ M ) ) )
5026, 49sylan 458 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ M ) ^
( k  +  1 ) )  =  ( ( ( A ^ M ) ^ k
)  x.  ( A ^ M ) ) )
5148, 50eqeq12d 2450 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ ( M  x.  ( k  +  1 ) ) )  =  ( ( A ^ M ) ^ (
k  +  1 ) )  <->  ( ( A ^ ( M  x.  k ) )  x.  ( A ^ M
) )  =  ( ( ( A ^ M ) ^ k
)  x.  ( A ^ M ) ) ) )
5230, 51syl5ibr 213 . . . . . 6  |-  ( ( ( A  e.  CC  /\  M  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( A ^ ( M  x.  k ) )  =  ( ( A ^ M ) ^ k
)  ->  ( A ^ ( M  x.  ( k  +  1 ) ) )  =  ( ( A ^ M ) ^ (
k  +  1 ) ) ) )
5352expcom 425 . . . . 5  |-  ( k  e.  NN0  ->  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( ( A ^
( M  x.  k
) )  =  ( ( A ^ M
) ^ k )  ->  ( A ^
( M  x.  (
k  +  1 ) ) )  =  ( ( A ^ M
) ^ ( k  +  1 ) ) ) ) )
5453a2d 24 . . . 4  |-  ( k  e.  NN0  ->  ( ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  x.  k )
)  =  ( ( A ^ M ) ^ k ) )  ->  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  ( A ^ ( M  x.  ( k  +  1 ) ) )  =  ( ( A ^ M ) ^ (
k  +  1 ) ) ) ) )
555, 10, 15, 20, 29, 54nn0ind 10359 . . 3  |-  ( N  e.  NN0  ->  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) ) )
5655exp3acom3r 1379 . 2  |-  ( A  e.  CC  ->  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) ) ) )
57563imp 1147 1  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725  (class class class)co 6074   CCcc 8981   0cc0 8983   1c1 8984    + caddc 8986    x. cmul 8988   NN0cn0 10214   ^cexp 11375
This theorem is referenced by:  expmulz  11419  expnass  11479  expmuld  11519  mcubic  20680  quart1  20689  log2cnv  20777  log2ublem2  20780  log2ub  20782  basellem3  20858  bclbnd  21057
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-cnex 9039  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-iun 4088  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-2nd 6343  df-riota 6542  df-recs 6626  df-rdg 6661  df-er 6898  df-en 7103  df-dom 7104  df-sdom 7105  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-nn 9994  df-n0 10215  df-z 10276  df-uz 10482  df-seq 11317  df-exp 11376
  Copyright terms: Public domain W3C validator