MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expmulz Unicode version

Theorem expmulz 11144
Description: Product of exponents law for integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135. (Contributed by Mario Carneiro, 7-Jul-2014.)
Assertion
Ref Expression
expmulz  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) )

Proof of Theorem expmulz
StepHypRef Expression
1 elznn0nn 10033 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
2 elznn0nn 10033 . . . 4  |-  ( M  e.  ZZ  <->  ( M  e.  NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )
3 expmul 11143 . . . . . . . 8  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) )
433expia 1153 . . . . . . 7  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( N  e.  NN0  ->  ( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) ) )
54adantlr 695 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0 )  ->  ( N  e. 
NN0  ->  ( A ^
( M  x.  N
) )  =  ( ( A ^ M
) ^ N ) ) )
6 simp2l 981 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  M  e.  RR )
76recnd 8857 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  M  e.  CC )
8 simp3 957 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  N  e.  NN0 )
98nn0cnd 10016 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  N  e.  CC )
107, 9mulneg1d 9228 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( -u M  x.  N )  =  -u ( M  x.  N ) )
1110oveq2d 5836 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ ( -u M  x.  N ) )  =  ( A ^ -u ( M  x.  N )
) )
12 simp1l 979 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  A  e.  CC )
13 simp2r 982 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u M  e.  NN )
1413nnnn0d 10014 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u M  e.  NN0 )
15 expmul 11143 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  -u M  e.  NN0  /\  N  e.  NN0 )  -> 
( A ^ ( -u M  x.  N ) )  =  ( ( A ^ -u M
) ^ N ) )
1612, 14, 8, 15syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ ( -u M  x.  N ) )  =  ( ( A ^ -u M ) ^ N
) )
1711, 16eqtr3d 2318 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ -u ( M  x.  N ) )  =  ( ( A ^ -u M ) ^ N ) )
1817oveq2d 5836 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  (
1  /  ( A ^ -u ( M  x.  N ) ) )  =  ( 1  /  ( ( A ^ -u M ) ^ N ) ) )
19 expcl 11117 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  -u M  e.  NN0 )  ->  ( A ^ -u M
)  e.  CC )
2012, 14, 19syl2anc 642 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ -u M )  e.  CC )
21 simp1r 980 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  A  =/=  0 )
2213nnzd 10112 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u M  e.  ZZ )
23 expne0i 11130 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  -u M  e.  ZZ )  ->  ( A ^ -u M )  =/=  0 )
2412, 21, 22, 23syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ -u M )  =/=  0 )
258nn0zd 10111 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  N  e.  ZZ )
26 exprec 11139 . . . . . . . . . 10  |-  ( ( ( A ^ -u M
)  e.  CC  /\  ( A ^ -u M
)  =/=  0  /\  N  e.  ZZ )  ->  ( ( 1  /  ( A ^ -u M ) ) ^ N )  =  ( 1  /  ( ( A ^ -u M
) ^ N ) ) )
2720, 24, 25, 26syl3anc 1182 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  (
( 1  /  ( A ^ -u M ) ) ^ N )  =  ( 1  / 
( ( A ^ -u M ) ^ N
) ) )
2818, 27eqtr4d 2319 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  (
1  /  ( A ^ -u ( M  x.  N ) ) )  =  ( ( 1  /  ( A ^ -u M ) ) ^ N ) )
297, 9mulcld 8851 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( M  x.  N )  e.  CC )
3014, 8nn0mulcld 10019 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( -u M  x.  N )  e.  NN0 )
3110, 30eqeltrrd 2359 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u ( M  x.  N )  e.  NN0 )
32 expneg2 11108 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( M  x.  N
)  e.  CC  /\  -u ( M  x.  N
)  e.  NN0 )  ->  ( A ^ ( M  x.  N )
)  =  ( 1  /  ( A ^ -u ( M  x.  N
) ) ) )
3312, 29, 31, 32syl3anc 1182 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ ( M  x.  N ) )  =  ( 1  /  ( A ^ -u ( M  x.  N ) ) ) )
34 expneg2 11108 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  M  e.  CC  /\  -u M  e.  NN0 )  ->  ( A ^ M )  =  ( 1  /  ( A ^ -u M ) ) )
3512, 7, 14, 34syl3anc 1182 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ M )  =  ( 1  /  ( A ^ -u M ) ) )
3635oveq1d 5835 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  (
( A ^ M
) ^ N )  =  ( ( 1  /  ( A ^ -u M ) ) ^ N ) )
3728, 33, 363eqtr4d 2326 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) )
38373expia 1153 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN ) )  -> 
( N  e.  NN0  ->  ( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) ) )
395, 38jaodan 760 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e. 
NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )  ->  ( N  e. 
NN0  ->  ( A ^
( M  x.  N
) )  =  ( ( A ^ M
) ^ N ) ) )
40 simp2 956 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  M  e.  NN0 )
4140nn0cnd 10016 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  M  e.  CC )
42 simp3l 983 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  RR )
4342recnd 8857 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  CC )
4441, 43mulneg2d 9229 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( M  x.  -u N )  =  -u ( M  x.  N ) )
4544oveq2d 5836 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ ( M  x.  -u N ) )  =  ( A ^ -u ( M  x.  N )
) )
46 simp1l 979 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A  e.  CC )
47 simp3r 984 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN )
4847nnnn0d 10014 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN0 )
49 expmul 11143 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  -u N  e.  NN0 )  ->  ( A ^ ( M  x.  -u N ) )  =  ( ( A ^ M ) ^ -u N
) )
5046, 40, 48, 49syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ ( M  x.  -u N ) )  =  ( ( A ^ M ) ^ -u N
) )
5145, 50eqtr3d 2318 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ -u ( M  x.  N ) )  =  ( ( A ^ M ) ^ -u N ) )
5251oveq2d 5836 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
1  /  ( A ^ -u ( M  x.  N ) ) )  =  ( 1  /  ( ( A ^ M ) ^ -u N ) ) )
5341, 43mulcld 8851 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( M  x.  N )  e.  CC )
5440, 48nn0mulcld 10019 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( M  x.  -u N )  e.  NN0 )
5544, 54eqeltrrd 2359 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u ( M  x.  N )  e.  NN0 )
5646, 53, 55, 32syl3anc 1182 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ ( M  x.  N ) )  =  ( 1  /  ( A ^ -u ( M  x.  N ) ) ) )
57 expcl 11117 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ M
)  e.  CC )
5846, 40, 57syl2anc 642 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ M )  e.  CC )
59 expneg2 11108 . . . . . . . . 9  |-  ( ( ( A ^ M
)  e.  CC  /\  N  e.  CC  /\  -u N  e.  NN0 )  ->  (
( A ^ M
) ^ N )  =  ( 1  / 
( ( A ^ M ) ^ -u N
) ) )
6058, 43, 48, 59syl3anc 1182 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A ^ M
) ^ N )  =  ( 1  / 
( ( A ^ M ) ^ -u N
) ) )
6152, 56, 603eqtr4d 2326 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) )
62613expia 1153 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0 )  ->  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) ) )
63 simp1l 979 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A  e.  CC )
64 simp2l 981 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  M  e.  RR )
6564recnd 8857 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  M  e.  CC )
66 simp2r 982 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u M  e.  NN )
6766nnnn0d 10014 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u M  e.  NN0 )
6863, 65, 67, 34syl3anc 1182 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ M
)  =  ( 1  /  ( A ^ -u M ) ) )
6968oveq1d 5835 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( A ^ M ) ^ N
)  =  ( ( 1  /  ( A ^ -u M ) ) ^ N ) )
7063, 67, 19syl2anc 642 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u M
)  e.  CC )
71 simp1r 980 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A  =/=  0 )
7266nnzd 10112 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u M  e.  ZZ )
7363, 71, 72, 23syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u M
)  =/=  0 )
7470, 73reccld 9525 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  ( A ^ -u M ) )  e.  CC )
75 simp3l 983 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  RR )
7675recnd 8857 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  CC )
77 simp3r 984 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN )
7877nnnn0d 10014 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN0 )
79 expneg2 11108 . . . . . . . . 9  |-  ( ( ( 1  /  ( A ^ -u M ) )  e.  CC  /\  N  e.  CC  /\  -u N  e.  NN0 )  ->  (
( 1  /  ( A ^ -u M ) ) ^ N )  =  ( 1  / 
( ( 1  / 
( A ^ -u M
) ) ^ -u N
) ) )
8074, 76, 78, 79syl3anc 1182 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( 1  / 
( A ^ -u M
) ) ^ N
)  =  ( 1  /  ( ( 1  /  ( A ^ -u M ) ) ^ -u N ) ) )
8177nnzd 10112 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  ZZ )
82 exprec 11139 . . . . . . . . . . 11  |-  ( ( ( A ^ -u M
)  e.  CC  /\  ( A ^ -u M
)  =/=  0  /\  -u N  e.  ZZ )  ->  ( ( 1  /  ( A ^ -u M ) ) ^ -u N )  =  ( 1  /  ( ( A ^ -u M
) ^ -u N
) ) )
8370, 73, 81, 82syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( 1  / 
( A ^ -u M
) ) ^ -u N
)  =  ( 1  /  ( ( A ^ -u M ) ^ -u N ) ) )
8483oveq2d 5836 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  (
( 1  /  ( A ^ -u M ) ) ^ -u N
) )  =  ( 1  /  ( 1  /  ( ( A ^ -u M ) ^ -u N ) ) ) )
85 expcl 11117 . . . . . . . . . . 11  |-  ( ( ( A ^ -u M
)  e.  CC  /\  -u N  e.  NN0 )  ->  ( ( A ^ -u M ) ^ -u N
)  e.  CC )
8670, 78, 85syl2anc 642 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( A ^ -u M ) ^ -u N
)  e.  CC )
87 expne0i 11130 . . . . . . . . . . 11  |-  ( ( ( A ^ -u M
)  e.  CC  /\  ( A ^ -u M
)  =/=  0  /\  -u N  e.  ZZ )  ->  ( ( A ^ -u M ) ^ -u N )  =/=  0 )
8870, 73, 81, 87syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( A ^ -u M ) ^ -u N
)  =/=  0 )
8986, 88recrecd 9529 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  (
1  /  ( ( A ^ -u M
) ^ -u N
) ) )  =  ( ( A ^ -u M ) ^ -u N
) )
90 expmul 11143 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  -u M  e.  NN0  /\  -u N  e.  NN0 )  ->  ( A ^ ( -u M  x.  -u N
) )  =  ( ( A ^ -u M
) ^ -u N
) )
9163, 67, 78, 90syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( -u M  x.  -u N
) )  =  ( ( A ^ -u M
) ^ -u N
) )
9265, 76mul2negd 9230 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( -u M  x.  -u N
)  =  ( M  x.  N ) )
9392oveq2d 5836 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( -u M  x.  -u N
) )  =  ( A ^ ( M  x.  N ) ) )
9491, 93eqtr3d 2318 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( A ^ -u M ) ^ -u N
)  =  ( A ^ ( M  x.  N ) ) )
9584, 89, 943eqtrd 2320 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  (
( 1  /  ( A ^ -u M ) ) ^ -u N
) )  =  ( A ^ ( M  x.  N ) ) )
9669, 80, 953eqtrrd 2321 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) )
97963expia 1153 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN ) )  -> 
( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) ) )
9862, 97jaodan 760 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e. 
NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )  ->  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) ) )
9939, 98jaod 369 . . . 4  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e. 
NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )  ->  ( ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) ) )
1002, 99sylan2b 461 . . 3  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  ZZ )  ->  ( ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) ) )
1011, 100syl5bi 208 . 2  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  ZZ )  ->  ( N  e.  ZZ  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) ) )
102101impr 602 1  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1685    =/= wne 2447  (class class class)co 5820   CCcc 8731   RRcr 8732   0cc0 8733   1c1 8734    x. cmul 8738   -ucneg 9034    / cdiv 9419   NNcn 9742   NN0cn0 9961   ZZcz 10020   ^cexp 11100
This theorem is referenced by:  iexpcyc  11203  iseraltlem2  12151  iseraltlem3  12152  dvexp3  19321  cxpeq  20093  atantayl2  20230  basellem3  20316  lgseisenlem1  20584  lgseisenlem4  20587  lgsquadlem1  20589  lgsquad2lem1  20593  m1lgs  20597  jm2.21  26498
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-n0 9962  df-z 10021  df-uz 10227  df-seq 11043  df-exp 11101
  Copyright terms: Public domain W3C validator