MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expp1 Unicode version

Theorem expp1 11104
Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.)
Assertion
Ref Expression
expp1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A ^ ( N  +  1 ) )  =  ( ( A ^ N )  x.  A ) )

Proof of Theorem expp1
StepHypRef Expression
1 elnn0 9962 . 2  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 seqp1 11055 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  1
)  ->  (  seq  1 (  x.  , 
( NN  X.  { A } ) ) `  ( N  +  1
) )  =  ( (  seq  1 (  x.  ,  ( NN 
X.  { A }
) ) `  N
)  x.  ( ( NN  X.  { A } ) `  ( N  +  1 ) ) ) )
3 nnuz 10258 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
42, 3eleq2s 2376 . . . . . 6  |-  ( N  e.  NN  ->  (  seq  1 (  x.  , 
( NN  X.  { A } ) ) `  ( N  +  1
) )  =  ( (  seq  1 (  x.  ,  ( NN 
X.  { A }
) ) `  N
)  x.  ( ( NN  X.  { A } ) `  ( N  +  1 ) ) ) )
54adantl 454 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  (  seq  1 (  x.  ,  ( NN 
X.  { A }
) ) `  ( N  +  1 ) )  =  ( (  seq  1 (  x.  ,  ( NN  X.  { A } ) ) `
 N )  x.  ( ( NN  X.  { A } ) `  ( N  +  1
) ) ) )
6 peano2nn 9753 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
7 fvconst2g 5688 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( N  +  1
)  e.  NN )  ->  ( ( NN 
X.  { A }
) `  ( N  +  1 ) )  =  A )
86, 7sylan2 462 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( ( NN  X.  { A } ) `  ( N  +  1
) )  =  A )
98oveq2d 5835 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( (  seq  1
(  x.  ,  ( NN  X.  { A } ) ) `  N )  x.  (
( NN  X.  { A } ) `  ( N  +  1 ) ) )  =  ( (  seq  1 (  x.  ,  ( NN 
X.  { A }
) ) `  N
)  x.  A ) )
105, 9eqtrd 2316 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  (  seq  1 (  x.  ,  ( NN 
X.  { A }
) ) `  ( N  +  1 ) )  =  ( (  seq  1 (  x.  ,  ( NN  X.  { A } ) ) `
 N )  x.  A ) )
11 expnnval 11101 . . . . 5  |-  ( ( A  e.  CC  /\  ( N  +  1
)  e.  NN )  ->  ( A ^
( N  +  1 ) )  =  (  seq  1 (  x.  ,  ( NN  X.  { A } ) ) `
 ( N  + 
1 ) ) )
126, 11sylan2 462 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ ( N  +  1 ) )  =  (  seq  1 (  x.  , 
( NN  X.  { A } ) ) `  ( N  +  1
) ) )
13 expnnval 11101 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ N
)  =  (  seq  1 (  x.  , 
( NN  X.  { A } ) ) `  N ) )
1413oveq1d 5834 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( ( A ^ N )  x.  A
)  =  ( (  seq  1 (  x.  ,  ( NN  X.  { A } ) ) `
 N )  x.  A ) )
1510, 12, 143eqtr4d 2326 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ ( N  +  1 ) )  =  ( ( A ^ N )  x.  A ) )
16 exp1 11103 . . . . . 6  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  A )
17 mulid2 8831 . . . . . 6  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
1816, 17eqtr4d 2319 . . . . 5  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  ( 1  x.  A
) )
1918adantr 453 . . . 4  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^
1 )  =  ( 1  x.  A ) )
20 simpr 449 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  N  =  0 )
2120oveq1d 5834 . . . . . 6  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( N  + 
1 )  =  ( 0  +  1 ) )
22 0p1e1 9834 . . . . . 6  |-  ( 0  +  1 )  =  1
2321, 22syl6eq 2332 . . . . 5  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( N  + 
1 )  =  1 )
2423oveq2d 5835 . . . 4  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^
( N  +  1 ) )  =  ( A ^ 1 ) )
25 oveq2 5827 . . . . . 6  |-  ( N  =  0  ->  ( A ^ N )  =  ( A ^ 0 ) )
26 exp0 11102 . . . . . 6  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
2725, 26sylan9eqr 2338 . . . . 5  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^ N )  =  1 )
2827oveq1d 5834 . . . 4  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( ( A ^ N )  x.  A )  =  ( 1  x.  A ) )
2919, 24, 283eqtr4d 2326 . . 3  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^
( N  +  1 ) )  =  ( ( A ^ N
)  x.  A ) )
3015, 29jaodan 762 . 2  |-  ( ( A  e.  CC  /\  ( N  e.  NN  \/  N  =  0
) )  ->  ( A ^ ( N  + 
1 ) )  =  ( ( A ^ N )  x.  A
) )
311, 30sylan2b 463 1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A ^ ( N  +  1 ) )  =  ( ( A ^ N )  x.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    \/ wo 359    /\ wa 360    = wceq 1624    e. wcel 1685   {csn 3641    X. cxp 4686   ` cfv 5221  (class class class)co 5819   CCcc 8730   0cc0 8732   1c1 8733    + caddc 8735    x. cmul 8737   NNcn 9741   NN0cn0 9960   ZZ>=cuz 10225    seq cseq 11040   ^cexp 11098
This theorem is referenced by:  expcllem  11108  expm1t  11124  expeq0  11126  mulexp  11135  expadd  11138  expmul  11141  leexp2r  11153  leexp1a  11154  sqval  11157  cu2  11195  i3  11198  binom3  11216  bernneq  11221  modexp  11230  expp1d  11240  faclbnd  11297  faclbnd2  11298  faclbnd4lem1  11300  faclbnd6  11306  cjexp  11629  absexp  11783  binomlem  12281  climcndslem1  12302  climcndslem2  12303  geolim  12320  geo2sum  12323  efexp  12375  demoivreALT  12475  rpnnen2lem11  12497  prmdvdsexp  12787  pcexp  12906  prmreclem6  12962  decexp2  13084  numexpp1  13087  cnfldexp  16401  expcn  18370  mbfi1fseqlem5  19068  dvexp  19296  aaliou3lem2  19717  tangtx  19867  cxpmul2  20030  mcubic  20137  cubic2  20138  binom4  20140  dquartlem2  20142  quart1lem  20145  quart1  20146  quartlem1  20147  log2cnv  20234  log2ublem2  20237  log2ub  20239  basellem3  20314  chtublem  20444  perfectlem1  20462  perfectlem2  20463  bclbnd  20513  bposlem8  20524  dchrisum0flblem1  20651  pntlemo  20750  qabvexp  20769  subfacval2  23122  sinccvglem  23409  heiborlem6  25939  bfplem1  25945  stoweidlem3  27151  stoweidlem19  27167
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-nn 9742  df-n0 9961  df-z 10020  df-uz 10226  df-seq 11041  df-exp 11099
  Copyright terms: Public domain W3C validator