MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expp1 Unicode version

Theorem expp1 10988
Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.)
Assertion
Ref Expression
expp1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A ^ ( N  +  1 ) )  =  ( ( A ^ N )  x.  A ) )

Proof of Theorem expp1
StepHypRef Expression
1 elnn0 9846 . 2  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 seqp1 10939 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  1
)  ->  (  seq  1 (  x.  , 
( NN  X.  { A } ) ) `  ( N  +  1
) )  =  ( (  seq  1 (  x.  ,  ( NN 
X.  { A }
) ) `  N
)  x.  ( ( NN  X.  { A } ) `  ( N  +  1 ) ) ) )
3 nnuz 10142 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
42, 3eleq2s 2345 . . . . . 6  |-  ( N  e.  NN  ->  (  seq  1 (  x.  , 
( NN  X.  { A } ) ) `  ( N  +  1
) )  =  ( (  seq  1 (  x.  ,  ( NN 
X.  { A }
) ) `  N
)  x.  ( ( NN  X.  { A } ) `  ( N  +  1 ) ) ) )
54adantl 454 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  (  seq  1 (  x.  ,  ( NN 
X.  { A }
) ) `  ( N  +  1 ) )  =  ( (  seq  1 (  x.  ,  ( NN  X.  { A } ) ) `
 N )  x.  ( ( NN  X.  { A } ) `  ( N  +  1
) ) ) )
6 peano2nn 9638 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
7 fvconst2g 5579 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( N  +  1
)  e.  NN )  ->  ( ( NN 
X.  { A }
) `  ( N  +  1 ) )  =  A )
86, 7sylan2 462 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( ( NN  X.  { A } ) `  ( N  +  1
) )  =  A )
98oveq2d 5726 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( (  seq  1
(  x.  ,  ( NN  X.  { A } ) ) `  N )  x.  (
( NN  X.  { A } ) `  ( N  +  1 ) ) )  =  ( (  seq  1 (  x.  ,  ( NN 
X.  { A }
) ) `  N
)  x.  A ) )
105, 9eqtrd 2285 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  (  seq  1 (  x.  ,  ( NN 
X.  { A }
) ) `  ( N  +  1 ) )  =  ( (  seq  1 (  x.  ,  ( NN  X.  { A } ) ) `
 N )  x.  A ) )
11 expnnval 10985 . . . . 5  |-  ( ( A  e.  CC  /\  ( N  +  1
)  e.  NN )  ->  ( A ^
( N  +  1 ) )  =  (  seq  1 (  x.  ,  ( NN  X.  { A } ) ) `
 ( N  + 
1 ) ) )
126, 11sylan2 462 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ ( N  +  1 ) )  =  (  seq  1 (  x.  , 
( NN  X.  { A } ) ) `  ( N  +  1
) ) )
13 expnnval 10985 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ N
)  =  (  seq  1 (  x.  , 
( NN  X.  { A } ) ) `  N ) )
1413oveq1d 5725 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( ( A ^ N )  x.  A
)  =  ( (  seq  1 (  x.  ,  ( NN  X.  { A } ) ) `
 N )  x.  A ) )
1510, 12, 143eqtr4d 2295 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ ( N  +  1 ) )  =  ( ( A ^ N )  x.  A ) )
16 exp1 10987 . . . . . 6  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  A )
17 mulid2 8715 . . . . . 6  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
1816, 17eqtr4d 2288 . . . . 5  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  ( 1  x.  A
) )
1918adantr 453 . . . 4  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^
1 )  =  ( 1  x.  A ) )
20 simpr 449 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  N  =  0 )
2120oveq1d 5725 . . . . . 6  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( N  + 
1 )  =  ( 0  +  1 ) )
22 0p1e1 9719 . . . . . 6  |-  ( 0  +  1 )  =  1
2321, 22syl6eq 2301 . . . . 5  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( N  + 
1 )  =  1 )
2423oveq2d 5726 . . . 4  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^
( N  +  1 ) )  =  ( A ^ 1 ) )
25 oveq2 5718 . . . . . 6  |-  ( N  =  0  ->  ( A ^ N )  =  ( A ^ 0 ) )
26 exp0 10986 . . . . . 6  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
2725, 26sylan9eqr 2307 . . . . 5  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^ N )  =  1 )
2827oveq1d 5725 . . . 4  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( ( A ^ N )  x.  A )  =  ( 1  x.  A ) )
2919, 24, 283eqtr4d 2295 . . 3  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^
( N  +  1 ) )  =  ( ( A ^ N
)  x.  A ) )
3015, 29jaodan 763 . 2  |-  ( ( A  e.  CC  /\  ( N  e.  NN  \/  N  =  0
) )  ->  ( A ^ ( N  + 
1 ) )  =  ( ( A ^ N )  x.  A
) )
311, 30sylan2b 463 1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A ^ ( N  +  1 ) )  =  ( ( A ^ N )  x.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621   {csn 3544    X. cxp 4578   ` cfv 4592  (class class class)co 5710   CCcc 8615   0cc0 8617   1c1 8618    + caddc 8620    x. cmul 8622   NNcn 9626   NN0cn0 9844   ZZ>=cuz 10109    seq cseq 10924   ^cexp 10982
This theorem is referenced by:  expcllem  10992  expm1t  11008  expeq0  11010  mulexp  11019  expadd  11022  expmul  11025  leexp2r  11037  leexp1a  11038  sqval  11041  cu2  11079  i3  11082  binom3  11100  bernneq  11105  modexp  11114  expp1d  11124  faclbnd  11181  faclbnd2  11182  faclbnd4lem1  11184  faclbnd6  11190  cjexp  11512  absexp  11666  binomlem  12164  climcndslem1  12182  climcndslem2  12183  geolim  12200  geo2sum  12203  efexp  12255  demoivreALT  12355  rpnnen2lem11  12377  prmdvdsexp  12667  pcexp  12786  prmreclem6  12842  decexp2  12964  numexpp1  12967  cnfldexp  16239  expcn  18208  mbfi1fseqlem5  18906  dvexp  19134  aaliou3lem2  19555  tangtx  19705  cxpmul2  19904  mcubic  19975  cubic2  19976  binom4  19978  dquartlem2  19980  quart1lem  19983  quart1  19984  quartlem1  19985  log2cnv  20072  log2ublem2  20075  log2ub  20077  basellem3  20152  chtublem  20282  perfectlem1  20300  perfectlem2  20301  bclbnd  20351  bposlem8  20362  dchrisum0flblem1  20489  pntlemo  20588  qabvexp  20607  subfacval2  22889  sinccvglem  23176  heiborlem6  25706  bfplem1  25712  stoweidlem3  26886  stoweidlem19  26902
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-n 9627  df-n0 9845  df-z 9904  df-uz 10110  df-seq 10925  df-exp 10983
  Copyright terms: Public domain W3C validator