MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cnvcnv Unicode version

Theorem f1cnvcnv 5369
Description: Two ways to express that a set  A (not necessarily a function) is one-to-one. Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one. We do not introduce a separate notation since we rarely use it. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
f1cnvcnv  |-  ( `' `' A : dom  A -1-1-> _V  <->  ( Fun  `' A  /\  Fun  `' `' A ) )

Proof of Theorem f1cnvcnv
StepHypRef Expression
1 df-f1 4672 . 2  |-  ( `' `' A : dom  A -1-1-> _V  <->  ( `' `' A : dom  A --> _V  /\  Fun  `' `' `' A ) )
2 dffn2 5314 . . . 4  |-  ( `' `' A  Fn  dom  A  <->  `' `' A : dom  A --> _V )
3 dmcnvcnv 4875 . . . . 5  |-  dom  `' `' A  =  dom  A
4 df-fn 4670 . . . . 5  |-  ( `' `' A  Fn  dom  A  <-> 
( Fun  `' `' A  /\  dom  `' `' A  =  dom  A ) )
53, 4mpbiran2 890 . . . 4  |-  ( `' `' A  Fn  dom  A  <->  Fun  `' `' A )
62, 5bitr3i 244 . . 3  |-  ( `' `' A : dom  A --> _V 
<->  Fun  `' `' A
)
7 relcnv 5025 . . . . 5  |-  Rel  `' A
8 dfrel2 5098 . . . . 5  |-  ( Rel  `' A  <->  `' `' `' A  =  `' A )
97, 8mpbi 201 . . . 4  |-  `' `' `' A  =  `' A
109funeqi 5200 . . 3  |-  ( Fun  `' `' `' A  <->  Fun  `' A )
116, 10anbi12ci 682 . 2  |-  ( ( `' `' A : dom  A --> _V  /\  Fun  `' `' `' A )  <->  ( Fun  `' A  /\  Fun  `' `' A ) )
121, 11bitri 242 1  |-  ( `' `' A : dom  A -1-1-> _V  <->  ( Fun  `' A  /\  Fun  `' `' A ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    = wceq 1619   _Vcvv 2757   `'ccnv 4646   dom cdm 4647   Rel wrel 4652   Fun wfun 4653    Fn wfn 4654   -->wf 4655   -1-1->wf1 4656
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pr 4172
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-rab 2525  df-v 2759  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-sn 3606  df-pr 3607  df-op 3609  df-br 3984  df-opab 4038  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672
  Copyright terms: Public domain W3C validator