MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1co Unicode version

Theorem f1co 5349
Description: Composition of one-to-one functions. Exercise 30 of [TakeutiZaring] p. 25. (Contributed by NM, 28-May-1998.)
Assertion
Ref Expression
f1co  |-  ( ( F : B -1-1-> C  /\  G : A -1-1-> B
)  ->  ( F  o.  G ) : A -1-1-> C )

Proof of Theorem f1co
StepHypRef Expression
1 df-f1 4651 . . 3  |-  ( F : B -1-1-> C  <->  ( F : B --> C  /\  Fun  `' F ) )
2 df-f1 4651 . . 3  |-  ( G : A -1-1-> B  <->  ( G : A --> B  /\  Fun  `' G ) )
3 fco 5301 . . . . 5  |-  ( ( F : B --> C  /\  G : A --> B )  ->  ( F  o.  G ) : A --> C )
4 funco 5195 . . . . . . 7  |-  ( ( Fun  `' G  /\  Fun  `' F )  ->  Fun  ( `' G  o.  `' F ) )
5 cnvco 4818 . . . . . . . 8  |-  `' ( F  o.  G )  =  ( `' G  o.  `' F )
65funeqi 5179 . . . . . . 7  |-  ( Fun  `' ( F  o.  G )  <->  Fun  ( `' G  o.  `' F
) )
74, 6sylibr 205 . . . . . 6  |-  ( ( Fun  `' G  /\  Fun  `' F )  ->  Fun  `' ( F  o.  G
) )
87ancoms 441 . . . . 5  |-  ( ( Fun  `' F  /\  Fun  `' G )  ->  Fun  `' ( F  o.  G
) )
93, 8anim12i 551 . . . 4  |-  ( ( ( F : B --> C  /\  G : A --> B )  /\  ( Fun  `' F  /\  Fun  `' G ) )  -> 
( ( F  o.  G ) : A --> C  /\  Fun  `' ( F  o.  G ) ) )
109an4s 802 . . 3  |-  ( ( ( F : B --> C  /\  Fun  `' F
)  /\  ( G : A --> B  /\  Fun  `' G ) )  -> 
( ( F  o.  G ) : A --> C  /\  Fun  `' ( F  o.  G ) ) )
111, 2, 10syl2anb 467 . 2  |-  ( ( F : B -1-1-> C  /\  G : A -1-1-> B
)  ->  ( ( F  o.  G ) : A --> C  /\  Fun  `' ( F  o.  G
) ) )
12 df-f1 4651 . 2  |-  ( ( F  o.  G ) : A -1-1-> C  <->  ( ( F  o.  G ) : A --> C  /\  Fun  `' ( F  o.  G
) ) )
1311, 12sylibr 205 1  |-  ( ( F : B -1-1-> C  /\  G : A -1-1-> B
)  ->  ( F  o.  G ) : A -1-1-> C )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360   `'ccnv 4625    o. ccom 4630   Fun wfun 4632   -->wf 4634   -1-1->wf1 4635
This theorem is referenced by:  f1oco  5399  tposf12  6158  domtr  6847  dfac12lem2  7703  fin23lem28  7899  pwfseqlem5  8218  cofth  13736  gsumzf1o  15123  erdsze2lem2  23072
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-op 3590  df-br 3964  df-opab 4018  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651
  Copyright terms: Public domain W3C validator