MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imaen Unicode version

Theorem f1imaen 7160
Description: A one-to-one function's image under a subset of its domain is equinumerous to the subset. (Contributed by NM, 30-Sep-2004.)
Hypothesis
Ref Expression
f1imaen.1  |-  C  e. 
_V
Assertion
Ref Expression
f1imaen  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F " C )  ~~  C
)

Proof of Theorem f1imaen
StepHypRef Expression
1 f1imaen.1 . 2  |-  C  e. 
_V
2 f1imaeng 7158 . 2  |-  ( ( F : A -1-1-> B  /\  C  C_  A  /\  C  e.  _V )  ->  ( F " C
)  ~~  C )
31, 2mp3an3 1268 1  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F " C )  ~~  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1725   _Vcvv 2948    C_ wss 3312   class class class wbr 4204   "cima 4872   -1-1->wf1 5442    ~~ cen 7097
This theorem is referenced by:  ssenen  7272  fin4en1  8178  tskinf  8633  tskuni  8647  isercoll  12449  phimullem  13156  odngen  15199  erdsze2lem2  24878
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-er 6896  df-en 7101
  Copyright terms: Public domain W3C validator