MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oiso Unicode version

Theorem f1oiso 5768
Description: Any one-to-one onto function determines an isomorphism with an induced relation  S. Proposition 6.33 of [TakeutiZaring] p. 34. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
f1oiso  |-  ( ( H : A -1-1-onto-> B  /\  S  =  { <. z ,  w >.  |  E. x  e.  A  E. y  e.  A  (
( z  =  ( H `  x )  /\  w  =  ( H `  y ) )  /\  x R y ) } )  ->  H  Isom  R ,  S  ( A ,  B ) )
Distinct variable groups:    x, y,
z, w, A    x, B, y    x, H, y, z, w    x, R, y, z, w
Allowed substitution hints:    B( z, w)    S( x, y, z, w)

Proof of Theorem f1oiso
StepHypRef Expression
1 simpl 445 . 2  |-  ( ( H : A -1-1-onto-> B  /\  S  =  { <. z ,  w >.  |  E. x  e.  A  E. y  e.  A  (
( z  =  ( H `  x )  /\  w  =  ( H `  y ) )  /\  x R y ) } )  ->  H : A -1-1-onto-> B
)
2 f1of1 5395 . . 3  |-  ( H : A -1-1-onto-> B  ->  H : A -1-1-> B )
3 df-br 3984 . . . . 5  |-  ( ( H `  v ) S ( H `  u )  <->  <. ( H `
 v ) ,  ( H `  u
) >.  e.  S )
4 eleq2 2317 . . . . . . 7  |-  ( S  =  { <. z ,  w >.  |  E. x  e.  A  E. y  e.  A  (
( z  =  ( H `  x )  /\  w  =  ( H `  y ) )  /\  x R y ) }  ->  (
<. ( H `  v
) ,  ( H `
 u ) >.  e.  S  <->  <. ( H `  v ) ,  ( H `  u )
>.  e.  { <. z ,  w >.  |  E. x  e.  A  E. y  e.  A  (
( z  =  ( H `  x )  /\  w  =  ( H `  y ) )  /\  x R y ) } ) )
5 fvex 5458 . . . . . . . . 9  |-  ( H `
 v )  e. 
_V
6 fvex 5458 . . . . . . . . 9  |-  ( H `
 u )  e. 
_V
7 eqeq1 2262 . . . . . . . . . . . 12  |-  ( z  =  ( H `  v )  ->  (
z  =  ( H `
 x )  <->  ( H `  v )  =  ( H `  x ) ) )
87anbi1d 688 . . . . . . . . . . 11  |-  ( z  =  ( H `  v )  ->  (
( z  =  ( H `  x )  /\  w  =  ( H `  y ) )  <->  ( ( H `
 v )  =  ( H `  x
)  /\  w  =  ( H `  y ) ) ) )
98anbi1d 688 . . . . . . . . . 10  |-  ( z  =  ( H `  v )  ->  (
( ( z  =  ( H `  x
)  /\  w  =  ( H `  y ) )  /\  x R y )  <->  ( (
( H `  v
)  =  ( H `
 x )  /\  w  =  ( H `  y ) )  /\  x R y ) ) )
1092rexbidv 2559 . . . . . . . . 9  |-  ( z  =  ( H `  v )  ->  ( E. x  e.  A  E. y  e.  A  ( ( z  =  ( H `  x
)  /\  w  =  ( H `  y ) )  /\  x R y )  <->  E. x  e.  A  E. y  e.  A  ( (
( H `  v
)  =  ( H `
 x )  /\  w  =  ( H `  y ) )  /\  x R y ) ) )
11 eqeq1 2262 . . . . . . . . . . . 12  |-  ( w  =  ( H `  u )  ->  (
w  =  ( H `
 y )  <->  ( H `  u )  =  ( H `  y ) ) )
1211anbi2d 687 . . . . . . . . . . 11  |-  ( w  =  ( H `  u )  ->  (
( ( H `  v )  =  ( H `  x )  /\  w  =  ( H `  y ) )  <->  ( ( H `
 v )  =  ( H `  x
)  /\  ( H `  u )  =  ( H `  y ) ) ) )
1312anbi1d 688 . . . . . . . . . 10  |-  ( w  =  ( H `  u )  ->  (
( ( ( H `
 v )  =  ( H `  x
)  /\  w  =  ( H `  y ) )  /\  x R y )  <->  ( (
( H `  v
)  =  ( H `
 x )  /\  ( H `  u )  =  ( H `  y ) )  /\  x R y ) ) )
14132rexbidv 2559 . . . . . . . . 9  |-  ( w  =  ( H `  u )  ->  ( E. x  e.  A  E. y  e.  A  ( ( ( H `
 v )  =  ( H `  x
)  /\  w  =  ( H `  y ) )  /\  x R y )  <->  E. x  e.  A  E. y  e.  A  ( (
( H `  v
)  =  ( H `
 x )  /\  ( H `  u )  =  ( H `  y ) )  /\  x R y ) ) )
155, 6, 10, 14opelopab 4244 . . . . . . . 8  |-  ( <.
( H `  v
) ,  ( H `
 u ) >.  e.  { <. z ,  w >.  |  E. x  e.  A  E. y  e.  A  ( ( z  =  ( H `  x )  /\  w  =  ( H `  y ) )  /\  x R y ) }  <->  E. x  e.  A  E. y  e.  A  ( ( ( H `
 v )  =  ( H `  x
)  /\  ( H `  u )  =  ( H `  y ) )  /\  x R y ) )
16 anass 633 . . . . . . . . . . . . . . 15  |-  ( ( ( ( H `  v )  =  ( H `  x )  /\  ( H `  u )  =  ( H `  y ) )  /\  x R y )  <->  ( ( H `  v )  =  ( H `  x )  /\  (
( H `  u
)  =  ( H `
 y )  /\  x R y ) ) )
17 f1fveq 5706 . . . . . . . . . . . . . . . . . 18  |-  ( ( H : A -1-1-> B  /\  ( v  e.  A  /\  x  e.  A
) )  ->  (
( H `  v
)  =  ( H `
 x )  <->  v  =  x ) )
18 eqcom 2258 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  x  <->  x  =  v )
1917, 18syl6bb 254 . . . . . . . . . . . . . . . . 17  |-  ( ( H : A -1-1-> B  /\  ( v  e.  A  /\  x  e.  A
) )  ->  (
( H `  v
)  =  ( H `
 x )  <->  x  =  v ) )
2019anassrs 632 . . . . . . . . . . . . . . . 16  |-  ( ( ( H : A -1-1-> B  /\  v  e.  A
)  /\  x  e.  A )  ->  (
( H `  v
)  =  ( H `
 x )  <->  x  =  v ) )
2120anbi1d 688 . . . . . . . . . . . . . . 15  |-  ( ( ( H : A -1-1-> B  /\  v  e.  A
)  /\  x  e.  A )  ->  (
( ( H `  v )  =  ( H `  x )  /\  ( ( H `
 u )  =  ( H `  y
)  /\  x R
y ) )  <->  ( x  =  v  /\  (
( H `  u
)  =  ( H `
 y )  /\  x R y ) ) ) )
2216, 21syl5bb 250 . . . . . . . . . . . . . 14  |-  ( ( ( H : A -1-1-> B  /\  v  e.  A
)  /\  x  e.  A )  ->  (
( ( ( H `
 v )  =  ( H `  x
)  /\  ( H `  u )  =  ( H `  y ) )  /\  x R y )  <->  ( x  =  v  /\  (
( H `  u
)  =  ( H `
 y )  /\  x R y ) ) ) )
2322rexbidv 2537 . . . . . . . . . . . . 13  |-  ( ( ( H : A -1-1-> B  /\  v  e.  A
)  /\  x  e.  A )  ->  ( E. y  e.  A  ( ( ( H `
 v )  =  ( H `  x
)  /\  ( H `  u )  =  ( H `  y ) )  /\  x R y )  <->  E. y  e.  A  ( x  =  v  /\  (
( H `  u
)  =  ( H `
 y )  /\  x R y ) ) ) )
24 r19.42v 2667 . . . . . . . . . . . . 13  |-  ( E. y  e.  A  ( x  =  v  /\  ( ( H `  u )  =  ( H `  y )  /\  x R y ) )  <->  ( x  =  v  /\  E. y  e.  A  ( ( H `  u )  =  ( H `  y )  /\  x R y ) ) )
2523, 24syl6bb 254 . . . . . . . . . . . 12  |-  ( ( ( H : A -1-1-> B  /\  v  e.  A
)  /\  x  e.  A )  ->  ( E. y  e.  A  ( ( ( H `
 v )  =  ( H `  x
)  /\  ( H `  u )  =  ( H `  y ) )  /\  x R y )  <->  ( x  =  v  /\  E. y  e.  A  ( ( H `  u )  =  ( H `  y )  /\  x R y ) ) ) )
2625rexbidva 2533 . . . . . . . . . . 11  |-  ( ( H : A -1-1-> B  /\  v  e.  A
)  ->  ( E. x  e.  A  E. y  e.  A  (
( ( H `  v )  =  ( H `  x )  /\  ( H `  u )  =  ( H `  y ) )  /\  x R y )  <->  E. x  e.  A  ( x  =  v  /\  E. y  e.  A  ( ( H `  u )  =  ( H `  y )  /\  x R y ) ) ) )
27 breq1 3986 . . . . . . . . . . . . . . 15  |-  ( x  =  v  ->  (
x R y  <->  v R
y ) )
2827anbi2d 687 . . . . . . . . . . . . . 14  |-  ( x  =  v  ->  (
( ( H `  u )  =  ( H `  y )  /\  x R y )  <->  ( ( H `
 u )  =  ( H `  y
)  /\  v R
y ) ) )
2928rexbidv 2537 . . . . . . . . . . . . 13  |-  ( x  =  v  ->  ( E. y  e.  A  ( ( H `  u )  =  ( H `  y )  /\  x R y )  <->  E. y  e.  A  ( ( H `  u )  =  ( H `  y )  /\  v R y ) ) )
3029ceqsrexv 2869 . . . . . . . . . . . 12  |-  ( v  e.  A  ->  ( E. x  e.  A  ( x  =  v  /\  E. y  e.  A  ( ( H `  u )  =  ( H `  y )  /\  x R y ) )  <->  E. y  e.  A  ( ( H `  u )  =  ( H `  y )  /\  v R y ) ) )
3130adantl 454 . . . . . . . . . . 11  |-  ( ( H : A -1-1-> B  /\  v  e.  A
)  ->  ( E. x  e.  A  (
x  =  v  /\  E. y  e.  A  ( ( H `  u
)  =  ( H `
 y )  /\  x R y ) )  <->  E. y  e.  A  ( ( H `  u )  =  ( H `  y )  /\  v R y ) ) )
3226, 31bitrd 246 . . . . . . . . . 10  |-  ( ( H : A -1-1-> B  /\  v  e.  A
)  ->  ( E. x  e.  A  E. y  e.  A  (
( ( H `  v )  =  ( H `  x )  /\  ( H `  u )  =  ( H `  y ) )  /\  x R y )  <->  E. y  e.  A  ( ( H `  u )  =  ( H `  y )  /\  v R y ) ) )
33 f1fveq 5706 . . . . . . . . . . . . . . 15  |-  ( ( H : A -1-1-> B  /\  ( u  e.  A  /\  y  e.  A
) )  ->  (
( H `  u
)  =  ( H `
 y )  <->  u  =  y ) )
34 eqcom 2258 . . . . . . . . . . . . . . 15  |-  ( u  =  y  <->  y  =  u )
3533, 34syl6bb 254 . . . . . . . . . . . . . 14  |-  ( ( H : A -1-1-> B  /\  ( u  e.  A  /\  y  e.  A
) )  ->  (
( H `  u
)  =  ( H `
 y )  <->  y  =  u ) )
3635anassrs 632 . . . . . . . . . . . . 13  |-  ( ( ( H : A -1-1-> B  /\  u  e.  A
)  /\  y  e.  A )  ->  (
( H `  u
)  =  ( H `
 y )  <->  y  =  u ) )
3736anbi1d 688 . . . . . . . . . . . 12  |-  ( ( ( H : A -1-1-> B  /\  u  e.  A
)  /\  y  e.  A )  ->  (
( ( H `  u )  =  ( H `  y )  /\  v R y )  <->  ( y  =  u  /\  v R y ) ) )
3837rexbidva 2533 . . . . . . . . . . 11  |-  ( ( H : A -1-1-> B  /\  u  e.  A
)  ->  ( E. y  e.  A  (
( H `  u
)  =  ( H `
 y )  /\  v R y )  <->  E. y  e.  A  ( y  =  u  /\  v R y ) ) )
39 breq2 3987 . . . . . . . . . . . . 13  |-  ( y  =  u  ->  (
v R y  <->  v R u ) )
4039ceqsrexv 2869 . . . . . . . . . . . 12  |-  ( u  e.  A  ->  ( E. y  e.  A  ( y  =  u  /\  v R y )  <->  v R u ) )
4140adantl 454 . . . . . . . . . . 11  |-  ( ( H : A -1-1-> B  /\  u  e.  A
)  ->  ( E. y  e.  A  (
y  =  u  /\  v R y )  <->  v R u ) )
4238, 41bitrd 246 . . . . . . . . . 10  |-  ( ( H : A -1-1-> B  /\  u  e.  A
)  ->  ( E. y  e.  A  (
( H `  u
)  =  ( H `
 y )  /\  v R y )  <->  v R u ) )
4332, 42sylan9bb 683 . . . . . . . . 9  |-  ( ( ( H : A -1-1-> B  /\  v  e.  A
)  /\  ( H : A -1-1-> B  /\  u  e.  A ) )  -> 
( E. x  e.  A  E. y  e.  A  ( ( ( H `  v )  =  ( H `  x )  /\  ( H `  u )  =  ( H `  y ) )  /\  x R y )  <->  v R u ) )
4443anandis 806 . . . . . . . 8  |-  ( ( H : A -1-1-> B  /\  ( v  e.  A  /\  u  e.  A
) )  ->  ( E. x  e.  A  E. y  e.  A  ( ( ( H `
 v )  =  ( H `  x
)  /\  ( H `  u )  =  ( H `  y ) )  /\  x R y )  <->  v R u ) )
4515, 44syl5bb 250 . . . . . . 7  |-  ( ( H : A -1-1-> B  /\  ( v  e.  A  /\  u  e.  A
) )  ->  ( <. ( H `  v
) ,  ( H `
 u ) >.  e.  { <. z ,  w >.  |  E. x  e.  A  E. y  e.  A  ( ( z  =  ( H `  x )  /\  w  =  ( H `  y ) )  /\  x R y ) }  <-> 
v R u ) )
464, 45sylan9bbr 684 . . . . . 6  |-  ( ( ( H : A -1-1-> B  /\  ( v  e.  A  /\  u  e.  A ) )  /\  S  =  { <. z ,  w >.  |  E. x  e.  A  E. y  e.  A  (
( z  =  ( H `  x )  /\  w  =  ( H `  y ) )  /\  x R y ) } )  ->  ( <. ( H `  v ) ,  ( H `  u ) >.  e.  S  <->  v R u ) )
4746an32s 782 . . . . 5  |-  ( ( ( H : A -1-1-> B  /\  S  =  { <. z ,  w >.  |  E. x  e.  A  E. y  e.  A  ( ( z  =  ( H `  x
)  /\  w  =  ( H `  y ) )  /\  x R y ) } )  /\  ( v  e.  A  /\  u  e.  A ) )  -> 
( <. ( H `  v ) ,  ( H `  u )
>.  e.  S  <->  v R u ) )
483, 47syl5rbb 251 . . . 4  |-  ( ( ( H : A -1-1-> B  /\  S  =  { <. z ,  w >.  |  E. x  e.  A  E. y  e.  A  ( ( z  =  ( H `  x
)  /\  w  =  ( H `  y ) )  /\  x R y ) } )  /\  ( v  e.  A  /\  u  e.  A ) )  -> 
( v R u  <-> 
( H `  v
) S ( H `
 u ) ) )
4948ralrimivva 2608 . . 3  |-  ( ( H : A -1-1-> B  /\  S  =  { <. z ,  w >.  |  E. x  e.  A  E. y  e.  A  ( ( z  =  ( H `  x
)  /\  w  =  ( H `  y ) )  /\  x R y ) } )  ->  A. v  e.  A  A. u  e.  A  ( v R u  <-> 
( H `  v
) S ( H `
 u ) ) )
502, 49sylan 459 . 2  |-  ( ( H : A -1-1-onto-> B  /\  S  =  { <. z ,  w >.  |  E. x  e.  A  E. y  e.  A  (
( z  =  ( H `  x )  /\  w  =  ( H `  y ) )  /\  x R y ) } )  ->  A. v  e.  A  A. u  e.  A  ( v R u  <-> 
( H `  v
) S ( H `
 u ) ) )
51 df-isom 4676 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. v  e.  A  A. u  e.  A  ( v R u  <-> 
( H `  v
) S ( H `
 u ) ) ) )
521, 50, 51sylanbrc 648 1  |-  ( ( H : A -1-1-onto-> B  /\  S  =  { <. z ,  w >.  |  E. x  e.  A  E. y  e.  A  (
( z  =  ( H `  x )  /\  w  =  ( H `  y ) )  /\  x R y ) } )  ->  H  Isom  R ,  S  ( A ,  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2516   E.wrex 2517   <.cop 3603   class class class wbr 3983   {copab 4036   -1-1->wf1 4656   -1-1-onto->wf1o 4658   ` cfv 4659    Isom wiso 4660
This theorem is referenced by:  f1oiso2  5769  hartogslem1  7211  cnso  12473
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-rab 2525  df-v 2759  df-sbc 2953  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-br 3984  df-opab 4038  df-id 4267  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-f1o 4674  df-fv 4675  df-isom 4676
  Copyright terms: Public domain W3C validator