MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facth Unicode version

Theorem facth 19681
Description: The factor theorem. If a polynomial  F has a root at  A, then  G  =  x  -  A is a factor of  F (and the other factor is  F quot  G). (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
facth.1  |-  G  =  ( X p  o F  -  ( CC  X.  { A } ) )
Assertion
Ref Expression
facth  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  F  =  ( G  o F  x.  ( F quot  G ) ) )

Proof of Theorem facth
StepHypRef Expression
1 facth.1 . . . . 5  |-  G  =  ( X p  o F  -  ( CC  X.  { A } ) )
2 eqid 2283 . . . . 5  |-  ( F  o F  -  ( G  o F  x.  ( F quot  G ) ) )  =  ( F  o F  -  ( G  o F  x.  ( F quot  G ) ) )
31, 2plyrem 19680 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F  o F  -  ( G  o F  x.  ( F quot  G ) ) )  =  ( CC  X.  { ( F `  A ) } ) )
433adant3 975 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  ( F  o F  -  ( G  o F  x.  ( F quot  G ) ) )  =  ( CC  X.  { ( F `  A ) } ) )
5 simp3 957 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  ( F `  A )  =  0 )
65sneqd 3653 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  { ( F `  A ) }  =  { 0 } )
76xpeq2d 4711 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  ( CC  X.  { ( F `
 A ) } )  =  ( CC 
X.  { 0 } ) )
84, 7eqtrd 2315 . 2  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  ( F  o F  -  ( G  o F  x.  ( F quot  G ) ) )  =  ( CC  X.  { 0 } ) )
9 cnex 8813 . . . 4  |-  CC  e.  _V
109a1i 10 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  CC  e.  _V )
11 simp1 955 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  F  e.  (Poly `  S )
)
12 plyf 19575 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
1311, 12syl 15 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  F : CC --> CC )
141plyremlem 19679 . . . . . . 7  |-  ( A  e.  CC  ->  ( G  e.  (Poly `  CC )  /\  (deg `  G
)  =  1  /\  ( `' G " { 0 } )  =  { A }
) )
15143ad2ant2 977 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  ( G  e.  (Poly `  CC )  /\  (deg `  G
)  =  1  /\  ( `' G " { 0 } )  =  { A }
) )
1615simp1d 967 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  G  e.  (Poly `  CC )
)
17 plyssc 19577 . . . . . . 7  |-  (Poly `  S )  C_  (Poly `  CC )
1817, 11sseldi 3178 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  F  e.  (Poly `  CC )
)
1915simp2d 968 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  (deg `  G )  =  1 )
20 ax-1ne0 8801 . . . . . . . . 9  |-  1  =/=  0
2120a1i 10 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  1  =/=  0 )
2219, 21eqnetrd 2464 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  (deg `  G )  =/=  0
)
23 fveq2 5485 . . . . . . . . 9  |-  ( G  =  0 p  -> 
(deg `  G )  =  (deg `  0 p
) )
24 dgr0 19638 . . . . . . . . 9  |-  (deg ` 
0 p )  =  0
2523, 24syl6eq 2331 . . . . . . . 8  |-  ( G  =  0 p  -> 
(deg `  G )  =  0 )
2625necon3i 2485 . . . . . . 7  |-  ( (deg
`  G )  =/=  0  ->  G  =/=  0 p )
2722, 26syl 15 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  G  =/=  0 p )
28 quotcl2 19677 . . . . . 6  |-  ( ( F  e.  (Poly `  CC )  /\  G  e.  (Poly `  CC )  /\  G  =/=  0 p )  ->  ( F quot  G )  e.  (Poly `  CC ) )
2918, 16, 27, 28syl3anc 1182 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  ( F quot  G )  e.  (Poly `  CC ) )
30 plymulcl 19598 . . . . 5  |-  ( ( G  e.  (Poly `  CC )  /\  ( F quot  G )  e.  (Poly `  CC ) )  -> 
( G  o F  x.  ( F quot  G
) )  e.  (Poly `  CC ) )
3116, 29, 30syl2anc 642 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  ( G  o F  x.  ( F quot  G ) )  e.  (Poly `  CC )
)
32 plyf 19575 . . . 4  |-  ( ( G  o F  x.  ( F quot  G )
)  e.  (Poly `  CC )  ->  ( G  o F  x.  ( F quot  G ) ) : CC --> CC )
3331, 32syl 15 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  ( G  o F  x.  ( F quot  G ) ) : CC --> CC )
34 ofsubeq0 9738 . . 3  |-  ( ( CC  e.  _V  /\  F : CC --> CC  /\  ( G  o F  x.  ( F quot  G ) ) : CC --> CC )  ->  ( ( F  o F  -  ( G  o F  x.  ( F quot  G ) ) )  =  ( CC  X.  { 0 } )  <-> 
F  =  ( G  o F  x.  ( F quot  G ) ) ) )
3510, 13, 33, 34syl3anc 1182 . 2  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  (
( F  o F  -  ( G  o F  x.  ( F quot  G ) ) )  =  ( CC  X.  {
0 } )  <->  F  =  ( G  o F  x.  ( F quot  G ) ) ) )
368, 35mpbid 201 1  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  F  =  ( G  o F  x.  ( F quot  G ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   _Vcvv 2788   {csn 3640    X. cxp 4685   `'ccnv 4686   "cima 4690   -->wf 5216   ` cfv 5220  (class class class)co 5819    o Fcof 6037   CCcc 8730   0cc0 8732   1c1 8733    x. cmul 8737    - cmin 9032   0 pc0p 19019  Polycply 19561   X pcidp 19562  degcdgr 19564   quot cquot 19665
This theorem is referenced by:  fta1lem  19682  vieta1lem1  19685  vieta1lem2  19686
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4186  ax-pr 4212  ax-un 4510  ax-inf2 7337  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4303  df-id 4307  df-po 4312  df-so 4313  df-fr 4350  df-se 4351  df-we 4352  df-ord 4393  df-on 4394  df-lim 4395  df-suc 4396  df-om 4655  df-xp 4693  df-rel 4694  df-cnv 4695  df-co 4696  df-dm 4697  df-rn 4698  df-res 4699  df-ima 4700  df-fun 5222  df-fn 5223  df-f 5224  df-f1 5225  df-fo 5226  df-f1o 5227  df-fv 5228  df-isom 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-oadd 6478  df-er 6655  df-map 6769  df-pm 6770  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-sup 7189  df-oi 7220  df-card 7567  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-n0 9961  df-z 10020  df-uz 10226  df-rp 10350  df-fz 10778  df-fzo 10866  df-fl 10920  df-seq 11042  df-exp 11100  df-hash 11333  df-cj 11579  df-re 11580  df-im 11581  df-sqr 11715  df-abs 11716  df-clim 11957  df-rlim 11958  df-sum 12154  df-0p 19020  df-ply 19565  df-idp 19566  df-coe 19567  df-dgr 19568  df-quot 19666
  Copyright terms: Public domain W3C validator