MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fctop Unicode version

Theorem fctop 17051
Description: The finite complement topology on a set  A. Example 3 in [Munkres] p. 77. (Contributed by FL, 15-Aug-2006.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
fctop  |-  ( A  e.  V  ->  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  e.  (TopOn `  A
) )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem fctop
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 4023 . . . . . . . 8  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  U. y  C_  U. {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )
2 ssrab2 3415 . . . . . . . . 9  |-  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } 
C_  ~P A
3 sspwuni 4163 . . . . . . . . 9  |-  ( { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  C_  ~P A 
<-> 
U. { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } 
C_  A )
42, 3mpbi 200 . . . . . . . 8  |-  U. {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  C_  A
51, 4syl6ss 3347 . . . . . . 7  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  U. y  C_  A
)
6 vex 2946 . . . . . . . . 9  |-  y  e. 
_V
76uniex 4691 . . . . . . . 8  |-  U. y  e.  _V
87elpw 3792 . . . . . . 7  |-  ( U. y  e.  ~P A  <->  U. y  C_  A )
95, 8sylibr 204 . . . . . 6  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  U. y  e.  ~P A )
10 uni0c 4028 . . . . . . . . . . 11  |-  ( U. y  =  (/)  <->  A. z  e.  y  z  =  (/) )
1110notbii 288 . . . . . . . . . 10  |-  ( -. 
U. y  =  (/)  <->  -.  A. z  e.  y  z  =  (/) )
12 rexnal 2703 . . . . . . . . . 10  |-  ( E. z  e.  y  -.  z  =  (/)  <->  -.  A. z  e.  y  z  =  (/) )
1311, 12bitr4i 244 . . . . . . . . 9  |-  ( -. 
U. y  =  (/)  <->  E. z  e.  y  -.  z  =  (/) )
14 ssel2 3330 . . . . . . . . . . . . . . . . 17  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  ->  z  e.  { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )
15 difeq2 3446 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  z  ->  ( A  \  x )  =  ( A  \  z
) )
1615eleq1d 2496 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  z  ->  (
( A  \  x
)  e.  Fin  <->  ( A  \  z )  e.  Fin ) )
17 eqeq1 2436 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  z  ->  (
x  =  (/)  <->  z  =  (/) ) )
1816, 17orbi12d 691 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  z  ->  (
( ( A  \  x )  e.  Fin  \/  x  =  (/) )  <->  ( ( A  \  z )  e. 
Fin  \/  z  =  (/) ) ) )
1918elrab 3079 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  <-> 
( z  e.  ~P A  /\  ( ( A 
\  z )  e. 
Fin  \/  z  =  (/) ) ) )
2014, 19sylib 189 . . . . . . . . . . . . . . . 16  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( z  e.  ~P A  /\  (
( A  \  z
)  e.  Fin  \/  z  =  (/) ) ) )
2120simprd 450 . . . . . . . . . . . . . . 15  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( ( A  \  z )  e. 
Fin  \/  z  =  (/) ) )
2221ord 367 . . . . . . . . . . . . . 14  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( -.  ( A  \  z
)  e.  Fin  ->  z  =  (/) ) )
2322con1d 118 . . . . . . . . . . . . 13  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( -.  z  =  (/)  ->  ( A  \  z )  e. 
Fin ) )
2423imp 419 . . . . . . . . . . . 12  |-  ( ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  ->  ( A  \  z )  e. 
Fin )
25 elssuni 4030 . . . . . . . . . . . . . . . 16  |-  ( z  e.  y  ->  z  C_ 
U. y )
2625sscond 3471 . . . . . . . . . . . . . . 15  |-  ( z  e.  y  ->  ( A  \  U. y ) 
C_  ( A  \ 
z ) )
27 ssfi 7315 . . . . . . . . . . . . . . 15  |-  ( ( ( A  \  z
)  e.  Fin  /\  ( A  \  U. y
)  C_  ( A  \  z ) )  -> 
( A  \  U. y )  e.  Fin )
2826, 27sylan2 461 . . . . . . . . . . . . . 14  |-  ( ( ( A  \  z
)  e.  Fin  /\  z  e.  y )  ->  ( A  \  U. y )  e.  Fin )
2928expcom 425 . . . . . . . . . . . . 13  |-  ( z  e.  y  ->  (
( A  \  z
)  e.  Fin  ->  ( A  \  U. y
)  e.  Fin )
)
3029ad2antlr 708 . . . . . . . . . . . 12  |-  ( ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  ->  (
( A  \  z
)  e.  Fin  ->  ( A  \  U. y
)  e.  Fin )
)
3124, 30mpd 15 . . . . . . . . . . 11  |-  ( ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  ->  ( A  \  U. y )  e.  Fin )
3231exp31 588 . . . . . . . . . 10  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  ( z  e.  y  ->  ( -.  z  =  (/)  ->  ( A  \  U. y )  e.  Fin ) ) )
3332rexlimdv 2816 . . . . . . . . 9  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  ( E. z  e.  y  -.  z  =  (/)  ->  ( A  \ 
U. y )  e. 
Fin ) )
3413, 33syl5bi 209 . . . . . . . 8  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  ( -.  U. y  =  (/)  ->  ( A  \  U. y )  e.  Fin ) )
3534con1d 118 . . . . . . 7  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  ( -.  ( A  \  U. y )  e.  Fin  ->  U. y  =  (/) ) )
3635orrd 368 . . . . . 6  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  ( ( A 
\  U. y )  e. 
Fin  \/  U. y  =  (/) ) )
37 difeq2 3446 . . . . . . . . 9  |-  ( x  =  U. y  -> 
( A  \  x
)  =  ( A 
\  U. y ) )
3837eleq1d 2496 . . . . . . . 8  |-  ( x  =  U. y  -> 
( ( A  \  x )  e.  Fin  <->  ( A  \  U. y )  e.  Fin ) )
39 eqeq1 2436 . . . . . . . 8  |-  ( x  =  U. y  -> 
( x  =  (/)  <->  U. y  =  (/) ) )
4038, 39orbi12d 691 . . . . . . 7  |-  ( x  =  U. y  -> 
( ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) )  <->  ( ( A 
\  U. y )  e. 
Fin  \/  U. y  =  (/) ) ) )
4140elrab 3079 . . . . . 6  |-  ( U. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  <-> 
( U. y  e. 
~P A  /\  (
( A  \  U. y )  e.  Fin  \/ 
U. y  =  (/) ) ) )
429, 36, 41sylanbrc 646 . . . . 5  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  U. y  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )
4342ax-gen 1555 . . . 4  |-  A. y
( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  U. y  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )
44 ssinss1 3556 . . . . . . . . 9  |-  ( y 
C_  A  ->  (
y  i^i  z )  C_  A )
456elpw 3792 . . . . . . . . 9  |-  ( y  e.  ~P A  <->  y  C_  A )
466inex1 4331 . . . . . . . . . 10  |-  ( y  i^i  z )  e. 
_V
4746elpw 3792 . . . . . . . . 9  |-  ( ( y  i^i  z )  e.  ~P A  <->  ( y  i^i  z )  C_  A
)
4844, 45, 473imtr4i 258 . . . . . . . 8  |-  ( y  e.  ~P A  -> 
( y  i^i  z
)  e.  ~P A
)
4948ad2antrr 707 . . . . . . 7  |-  ( ( ( y  e.  ~P A  /\  ( ( A 
\  y )  e. 
Fin  \/  y  =  (/) ) )  /\  (
z  e.  ~P A  /\  ( ( A  \ 
z )  e.  Fin  \/  z  =  (/) ) ) )  ->  ( y  i^i  z )  e.  ~P A )
50 difindi 3582 . . . . . . . . . . 11  |-  ( A 
\  ( y  i^i  z ) )  =  ( ( A  \ 
y )  u.  ( A  \  z ) )
51 unfi 7360 . . . . . . . . . . 11  |-  ( ( ( A  \  y
)  e.  Fin  /\  ( A  \  z
)  e.  Fin )  ->  ( ( A  \ 
y )  u.  ( A  \  z ) )  e.  Fin )
5250, 51syl5eqel 2514 . . . . . . . . . 10  |-  ( ( ( A  \  y
)  e.  Fin  /\  ( A  \  z
)  e.  Fin )  ->  ( A  \  (
y  i^i  z )
)  e.  Fin )
5352orcd 382 . . . . . . . . 9  |-  ( ( ( A  \  y
)  e.  Fin  /\  ( A  \  z
)  e.  Fin )  ->  ( ( A  \ 
( y  i^i  z
) )  e.  Fin  \/  ( y  i^i  z
)  =  (/) ) )
54 ineq1 3522 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  ( y  i^i  z )  =  ( (/)  i^i  z
) )
55 incom 3520 . . . . . . . . . . . 12  |-  ( (/)  i^i  z )  =  ( z  i^i  (/) )
56 in0 3640 . . . . . . . . . . . 12  |-  ( z  i^i  (/) )  =  (/)
5755, 56eqtri 2450 . . . . . . . . . . 11  |-  ( (/)  i^i  z )  =  (/)
5854, 57syl6eq 2478 . . . . . . . . . 10  |-  ( y  =  (/)  ->  ( y  i^i  z )  =  (/) )
5958olcd 383 . . . . . . . . 9  |-  ( y  =  (/)  ->  ( ( A  \  ( y  i^i  z ) )  e.  Fin  \/  (
y  i^i  z )  =  (/) ) )
60 ineq2 3523 . . . . . . . . . . 11  |-  ( z  =  (/)  ->  ( y  i^i  z )  =  ( y  i^i  (/) ) )
61 in0 3640 . . . . . . . . . . 11  |-  ( y  i^i  (/) )  =  (/)
6260, 61syl6eq 2478 . . . . . . . . . 10  |-  ( z  =  (/)  ->  ( y  i^i  z )  =  (/) )
6362olcd 383 . . . . . . . . 9  |-  ( z  =  (/)  ->  ( ( A  \  ( y  i^i  z ) )  e.  Fin  \/  (
y  i^i  z )  =  (/) ) )
6453, 59, 63ccase2 915 . . . . . . . 8  |-  ( ( ( ( A  \ 
y )  e.  Fin  \/  y  =  (/) )  /\  ( ( A  \ 
z )  e.  Fin  \/  z  =  (/) ) )  ->  ( ( A 
\  ( y  i^i  z ) )  e. 
Fin  \/  ( y  i^i  z )  =  (/) ) )
6564ad2ant2l 727 . . . . . . 7  |-  ( ( ( y  e.  ~P A  /\  ( ( A 
\  y )  e. 
Fin  \/  y  =  (/) ) )  /\  (
z  e.  ~P A  /\  ( ( A  \ 
z )  e.  Fin  \/  z  =  (/) ) ) )  ->  ( ( A  \  ( y  i^i  z ) )  e. 
Fin  \/  ( y  i^i  z )  =  (/) ) )
6649, 65jca 519 . . . . . 6  |-  ( ( ( y  e.  ~P A  /\  ( ( A 
\  y )  e. 
Fin  \/  y  =  (/) ) )  /\  (
z  e.  ~P A  /\  ( ( A  \ 
z )  e.  Fin  \/  z  =  (/) ) ) )  ->  ( (
y  i^i  z )  e.  ~P A  /\  (
( A  \  (
y  i^i  z )
)  e.  Fin  \/  ( y  i^i  z
)  =  (/) ) ) )
67 difeq2 3446 . . . . . . . . . 10  |-  ( x  =  y  ->  ( A  \  x )  =  ( A  \  y
) )
6867eleq1d 2496 . . . . . . . . 9  |-  ( x  =  y  ->  (
( A  \  x
)  e.  Fin  <->  ( A  \  y )  e.  Fin ) )
69 eqeq1 2436 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  =  (/)  <->  y  =  (/) ) )
7068, 69orbi12d 691 . . . . . . . 8  |-  ( x  =  y  ->  (
( ( A  \  x )  e.  Fin  \/  x  =  (/) )  <->  ( ( A  \  y )  e. 
Fin  \/  y  =  (/) ) ) )
7170elrab 3079 . . . . . . 7  |-  ( y  e.  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  <-> 
( y  e.  ~P A  /\  ( ( A 
\  y )  e. 
Fin  \/  y  =  (/) ) ) )
7271, 19anbi12i 679 . . . . . 6  |-  ( ( y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )  <->  ( (
y  e.  ~P A  /\  ( ( A  \ 
y )  e.  Fin  \/  y  =  (/) ) )  /\  ( z  e. 
~P A  /\  (
( A  \  z
)  e.  Fin  \/  z  =  (/) ) ) ) )
73 difeq2 3446 . . . . . . . . 9  |-  ( x  =  ( y  i^i  z )  ->  ( A  \  x )  =  ( A  \  (
y  i^i  z )
) )
7473eleq1d 2496 . . . . . . . 8  |-  ( x  =  ( y  i^i  z )  ->  (
( A  \  x
)  e.  Fin  <->  ( A  \  ( y  i^i  z
) )  e.  Fin ) )
75 eqeq1 2436 . . . . . . . 8  |-  ( x  =  ( y  i^i  z )  ->  (
x  =  (/)  <->  ( y  i^i  z )  =  (/) ) )
7674, 75orbi12d 691 . . . . . . 7  |-  ( x  =  ( y  i^i  z )  ->  (
( ( A  \  x )  e.  Fin  \/  x  =  (/) )  <->  ( ( A  \  ( y  i^i  z ) )  e. 
Fin  \/  ( y  i^i  z )  =  (/) ) ) )
7776elrab 3079 . . . . . 6  |-  ( ( y  i^i  z )  e.  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  <-> 
( ( y  i^i  z )  e.  ~P A  /\  ( ( A 
\  ( y  i^i  z ) )  e. 
Fin  \/  ( y  i^i  z )  =  (/) ) ) )
7866, 72, 773imtr4i 258 . . . . 5  |-  ( ( y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )  -> 
( y  i^i  z
)  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } )
7978rgen2a 2759 . . . 4  |-  A. y  e.  { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } A. z  e.  { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) }  ( y  i^i  z )  e. 
{ x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) }
8043, 79pm3.2i 442 . . 3  |-  ( A. y ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } )  /\  A. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } A. z  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  ( y  i^i  z )  e. 
{ x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } )
81 pwexg 4370 . . . 4  |-  ( A  e.  V  ->  ~P A  e.  _V )
82 rabexg 4340 . . . 4  |-  ( ~P A  e.  _V  ->  { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  e.  _V )
83 istopg 16951 . . . 4  |-  ( { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  e.  _V  ->  ( { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  e.  Top  <->  ( A. y ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } )  /\  A. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } A. z  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  ( y  i^i  z )  e. 
{ x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } ) ) )
8481, 82, 833syl 19 . . 3  |-  ( A  e.  V  ->  ( { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) }  e.  Top  <->  ( A. y ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } )  /\  A. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } A. z  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  ( y  i^i  z )  e. 
{ x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } ) ) )
8580, 84mpbiri 225 . 2  |-  ( A  e.  V  ->  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  e.  Top )
86 pwidg 3798 . . . . 5  |-  ( A  e.  V  ->  A  e.  ~P A )
87 0fin 7322 . . . . . . 7  |-  (/)  e.  Fin
8887orci 380 . . . . . 6  |-  ( (/)  e.  Fin  \/  A  =  (/) )
8988a1i 11 . . . . 5  |-  ( A  e.  V  ->  ( (/) 
e.  Fin  \/  A  =  (/) ) )
90 difeq2 3446 . . . . . . . . 9  |-  ( x  =  A  ->  ( A  \  x )  =  ( A  \  A
) )
91 difid 3683 . . . . . . . . 9  |-  ( A 
\  A )  =  (/)
9290, 91syl6eq 2478 . . . . . . . 8  |-  ( x  =  A  ->  ( A  \  x )  =  (/) )
9392eleq1d 2496 . . . . . . 7  |-  ( x  =  A  ->  (
( A  \  x
)  e.  Fin  <->  (/)  e.  Fin ) )
94 eqeq1 2436 . . . . . . 7  |-  ( x  =  A  ->  (
x  =  (/)  <->  A  =  (/) ) )
9593, 94orbi12d 691 . . . . . 6  |-  ( x  =  A  ->  (
( ( A  \  x )  e.  Fin  \/  x  =  (/) )  <->  ( (/)  e.  Fin  \/  A  =  (/) ) ) )
9695elrab 3079 . . . . 5  |-  ( A  e.  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  <-> 
( A  e.  ~P A  /\  ( (/)  e.  Fin  \/  A  =  (/) ) ) )
9786, 89, 96sylanbrc 646 . . . 4  |-  ( A  e.  V  ->  A  e.  { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } )
98 elssuni 4030 . . . 4  |-  ( A  e.  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  A  C_  U. {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )
9997, 98syl 16 . . 3  |-  ( A  e.  V  ->  A  C_ 
U. { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } )
1004a1i 11 . . 3  |-  ( A  e.  V  ->  U. {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  C_  A
)
10199, 100eqssd 3352 . 2  |-  ( A  e.  V  ->  A  =  U. { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } )
102 istopon 16973 . 2  |-  ( { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  e.  (TopOn `  A )  <->  ( {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  e.  Top  /\  A  =  U. {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } ) )
10385, 101, 102sylanbrc 646 1  |-  ( A  e.  V  ->  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  e.  (TopOn `  A
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359   A.wal 1549    = wceq 1652    e. wcel 1725   A.wral 2692   E.wrex 2693   {crab 2696   _Vcvv 2943    \ cdif 3304    u. cun 3305    i^i cin 3306    C_ wss 3307   (/)c0 3615   ~Pcpw 3786   U.cuni 4002   ` cfv 5440   Fincfn 7095   Topctop 16941  TopOnctopon 16942
This theorem is referenced by:  fctop2  17052
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-ral 2697  df-rex 2698  df-reu 2699  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-pss 3323  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-tp 3809  df-op 3810  df-uni 4003  df-int 4038  df-iun 4082  df-br 4200  df-opab 4254  df-mpt 4255  df-tr 4290  df-eprel 4481  df-id 4485  df-po 4490  df-so 4491  df-fr 4528  df-we 4530  df-ord 4571  df-on 4572  df-lim 4573  df-suc 4574  df-om 4832  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-recs 6619  df-rdg 6654  df-oadd 6714  df-er 6891  df-en 7096  df-fin 7099  df-top 16946  df-topon 16949
  Copyright terms: Public domain W3C validator