Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fgmin Unicode version

Theorem fgmin 25718
Description: Minimality property of a generated filter: every filter that contains  B contains its generated filter. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 7-Aug-2015.)
Assertion
Ref Expression
fgmin  |-  ( ( B  e.  ( fBas `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( B  C_  F  <->  ( X filGen B )  C_  F
) )
Dummy variables  x  t are mutually distinct and distinct from all other variables.

Proof of Theorem fgmin
StepHypRef Expression
1 elfg 17560 . . . . . . 7  |-  ( B  e.  ( fBas `  X
)  ->  ( t  e.  ( X filGen B )  <-> 
( t  C_  X  /\  E. x  e.  B  x  C_  t ) ) )
21adantr 453 . . . . . 6  |-  ( ( B  e.  ( fBas `  X )  /\  F  e.  ( Fil `  X
) )  ->  (
t  e.  ( X
filGen B )  <->  ( t  C_  X  /\  E. x  e.  B  x  C_  t
) ) )
32adantr 453 . . . . 5  |-  ( ( ( B  e.  (
fBas `  X )  /\  F  e.  ( Fil `  X ) )  /\  B  C_  F
)  ->  ( t  e.  ( X filGen B )  <-> 
( t  C_  X  /\  E. x  e.  B  x  C_  t ) ) )
4 ssrexv 3239 . . . . . . . . 9  |-  ( B 
C_  F  ->  ( E. x  e.  B  x  C_  t  ->  E. x  e.  F  x  C_  t
) )
54adantl 454 . . . . . . . 8  |-  ( ( ( B  e.  (
fBas `  X )  /\  F  e.  ( Fil `  X ) )  /\  B  C_  F
)  ->  ( E. x  e.  B  x  C_  t  ->  E. x  e.  F  x  C_  t
) )
6 filss 17542 . . . . . . . . . . . 12  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  e.  F  /\  t  C_  X  /\  x  C_  t ) )  -> 
t  e.  F )
763exp2 1171 . . . . . . . . . . 11  |-  ( F  e.  ( Fil `  X
)  ->  ( x  e.  F  ->  ( t 
C_  X  ->  (
x  C_  t  ->  t  e.  F ) ) ) )
87com34 79 . . . . . . . . . 10  |-  ( F  e.  ( Fil `  X
)  ->  ( x  e.  F  ->  ( x 
C_  t  ->  (
t  C_  X  ->  t  e.  F ) ) ) )
98rexlimdv 2667 . . . . . . . . 9  |-  ( F  e.  ( Fil `  X
)  ->  ( E. x  e.  F  x  C_  t  ->  ( t  C_  X  ->  t  e.  F ) ) )
109ad2antlr 709 . . . . . . . 8  |-  ( ( ( B  e.  (
fBas `  X )  /\  F  e.  ( Fil `  X ) )  /\  B  C_  F
)  ->  ( E. x  e.  F  x  C_  t  ->  ( t  C_  X  ->  t  e.  F ) ) )
115, 10syld 42 . . . . . . 7  |-  ( ( ( B  e.  (
fBas `  X )  /\  F  e.  ( Fil `  X ) )  /\  B  C_  F
)  ->  ( E. x  e.  B  x  C_  t  ->  ( t  C_  X  ->  t  e.  F ) ) )
1211com23 74 . . . . . 6  |-  ( ( ( B  e.  (
fBas `  X )  /\  F  e.  ( Fil `  X ) )  /\  B  C_  F
)  ->  ( t  C_  X  ->  ( E. x  e.  B  x  C_  t  ->  t  e.  F ) ) )
1312imp3a 422 . . . . 5  |-  ( ( ( B  e.  (
fBas `  X )  /\  F  e.  ( Fil `  X ) )  /\  B  C_  F
)  ->  ( (
t  C_  X  /\  E. x  e.  B  x 
C_  t )  -> 
t  e.  F ) )
143, 13sylbid 208 . . . 4  |-  ( ( ( B  e.  (
fBas `  X )  /\  F  e.  ( Fil `  X ) )  /\  B  C_  F
)  ->  ( t  e.  ( X filGen B )  ->  t  e.  F
) )
1514ssrdv 3186 . . 3  |-  ( ( ( B  e.  (
fBas `  X )  /\  F  e.  ( Fil `  X ) )  /\  B  C_  F
)  ->  ( X filGen B )  C_  F
)
1615ex 425 . 2  |-  ( ( B  e.  ( fBas `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( B  C_  F  ->  ( X filGen B )  C_  F ) )
17 ssfg 17561 . . . 4  |-  ( B  e.  ( fBas `  X
)  ->  B  C_  ( X filGen B ) )
18 sstr2 3187 . . . 4  |-  ( B 
C_  ( X filGen B )  ->  ( ( X filGen B )  C_  F  ->  B  C_  F
) )
1917, 18syl 17 . . 3  |-  ( B  e.  ( fBas `  X
)  ->  ( ( X filGen B )  C_  F  ->  B  C_  F
) )
2019adantr 453 . 2  |-  ( ( B  e.  ( fBas `  X )  /\  F  e.  ( Fil `  X
) )  ->  (
( X filGen B ) 
C_  F  ->  B  C_  F ) )
2116, 20impbid 185 1  |-  ( ( B  e.  ( fBas `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( B  C_  F  <->  ( X filGen B )  C_  F
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    e. wcel 1685   E.wrex 2545    C_ wss 3153   ` cfv 5221  (class class class)co 5819   fBascfbas 17512   filGencfg 17513   Filcfil 17534
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-fbas 17514  df-fg 17515  df-fil 17535
  Copyright terms: Public domain W3C validator