Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fgmin Unicode version

Theorem fgmin 25672
Description: Minimality property of a generated filter: every filter that contains  B contains its generated filter. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 7-Aug-2015.)
Assertion
Ref Expression
fgmin  |-  ( ( B  e.  ( fBas `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( B  C_  F  <->  ( X filGen B )  C_  F
) )

Proof of Theorem fgmin
StepHypRef Expression
1 elfg 17514 . . . . . . 7  |-  ( B  e.  ( fBas `  X
)  ->  ( t  e.  ( X filGen B )  <-> 
( t  C_  X  /\  E. x  e.  B  x  C_  t ) ) )
21adantr 453 . . . . . 6  |-  ( ( B  e.  ( fBas `  X )  /\  F  e.  ( Fil `  X
) )  ->  (
t  e.  ( X
filGen B )  <->  ( t  C_  X  /\  E. x  e.  B  x  C_  t
) ) )
32adantr 453 . . . . 5  |-  ( ( ( B  e.  (
fBas `  X )  /\  F  e.  ( Fil `  X ) )  /\  B  C_  F
)  ->  ( t  e.  ( X filGen B )  <-> 
( t  C_  X  /\  E. x  e.  B  x  C_  t ) ) )
4 ssrexv 3199 . . . . . . . . 9  |-  ( B 
C_  F  ->  ( E. x  e.  B  x  C_  t  ->  E. x  e.  F  x  C_  t
) )
54adantl 454 . . . . . . . 8  |-  ( ( ( B  e.  (
fBas `  X )  /\  F  e.  ( Fil `  X ) )  /\  B  C_  F
)  ->  ( E. x  e.  B  x  C_  t  ->  E. x  e.  F  x  C_  t
) )
6 filss 17496 . . . . . . . . . . . 12  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  e.  F  /\  t  C_  X  /\  x  C_  t ) )  -> 
t  e.  F )
763exp2 1174 . . . . . . . . . . 11  |-  ( F  e.  ( Fil `  X
)  ->  ( x  e.  F  ->  ( t 
C_  X  ->  (
x  C_  t  ->  t  e.  F ) ) ) )
87com34 79 . . . . . . . . . 10  |-  ( F  e.  ( Fil `  X
)  ->  ( x  e.  F  ->  ( x 
C_  t  ->  (
t  C_  X  ->  t  e.  F ) ) ) )
98rexlimdv 2639 . . . . . . . . 9  |-  ( F  e.  ( Fil `  X
)  ->  ( E. x  e.  F  x  C_  t  ->  ( t  C_  X  ->  t  e.  F ) ) )
109ad2antlr 710 . . . . . . . 8  |-  ( ( ( B  e.  (
fBas `  X )  /\  F  e.  ( Fil `  X ) )  /\  B  C_  F
)  ->  ( E. x  e.  F  x  C_  t  ->  ( t  C_  X  ->  t  e.  F ) ) )
115, 10syld 42 . . . . . . 7  |-  ( ( ( B  e.  (
fBas `  X )  /\  F  e.  ( Fil `  X ) )  /\  B  C_  F
)  ->  ( E. x  e.  B  x  C_  t  ->  ( t  C_  X  ->  t  e.  F ) ) )
1211com23 74 . . . . . 6  |-  ( ( ( B  e.  (
fBas `  X )  /\  F  e.  ( Fil `  X ) )  /\  B  C_  F
)  ->  ( t  C_  X  ->  ( E. x  e.  B  x  C_  t  ->  t  e.  F ) ) )
1312imp3a 422 . . . . 5  |-  ( ( ( B  e.  (
fBas `  X )  /\  F  e.  ( Fil `  X ) )  /\  B  C_  F
)  ->  ( (
t  C_  X  /\  E. x  e.  B  x 
C_  t )  -> 
t  e.  F ) )
143, 13sylbid 208 . . . 4  |-  ( ( ( B  e.  (
fBas `  X )  /\  F  e.  ( Fil `  X ) )  /\  B  C_  F
)  ->  ( t  e.  ( X filGen B )  ->  t  e.  F
) )
1514ssrdv 3146 . . 3  |-  ( ( ( B  e.  (
fBas `  X )  /\  F  e.  ( Fil `  X ) )  /\  B  C_  F
)  ->  ( X filGen B )  C_  F
)
1615ex 425 . 2  |-  ( ( B  e.  ( fBas `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( B  C_  F  ->  ( X filGen B )  C_  F ) )
17 ssfg 17515 . . . 4  |-  ( B  e.  ( fBas `  X
)  ->  B  C_  ( X filGen B ) )
18 sstr2 3147 . . . 4  |-  ( B 
C_  ( X filGen B )  ->  ( ( X filGen B )  C_  F  ->  B  C_  F
) )
1917, 18syl 17 . . 3  |-  ( B  e.  ( fBas `  X
)  ->  ( ( X filGen B )  C_  F  ->  B  C_  F
) )
2019adantr 453 . 2  |-  ( ( B  e.  ( fBas `  X )  /\  F  e.  ( Fil `  X
) )  ->  (
( X filGen B ) 
C_  F  ->  B  C_  F ) )
2116, 20impbid 185 1  |-  ( ( B  e.  ( fBas `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( B  C_  F  <->  ( X filGen B )  C_  F
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    e. wcel 1621   E.wrex 2517    C_ wss 3113   ` cfv 4659  (class class class)co 5778   fBascfbas 17466   filGencfg 17467   Filcfil 17488
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-br 3984  df-opab 4038  df-mpt 4039  df-id 4267  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-fbas 17468  df-fg 17469  df-fil 17489
  Copyright terms: Public domain W3C validator