Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fgraphopab Unicode version

Theorem fgraphopab 26897
Description: Express a function as a subset of the cross product. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
fgraphopab  |-  ( F : A --> B  ->  F  =  { <. a ,  b >.  |  ( ( a  e.  A  /\  b  e.  B
)  /\  ( F `  a )  =  b ) } )
Distinct variable groups:    F, a,
b    A, a, b    B, a, b

Proof of Theorem fgraphopab
StepHypRef Expression
1 fssxp 5338 . . . 4  |-  ( F : A --> B  ->  F  C_  ( A  X.  B ) )
2 df-ss 3141 . . . 4  |-  ( F 
C_  ( A  X.  B )  <->  ( F  i^i  ( A  X.  B
) )  =  F )
31, 2sylib 190 . . 3  |-  ( F : A --> B  -> 
( F  i^i  ( A  X.  B ) )  =  F )
4 ffn 5327 . . . . 5  |-  ( F : A --> B  ->  F  Fn  A )
5 dffn5 5502 . . . . 5  |-  ( F  Fn  A  <->  F  =  ( a  e.  A  |->  ( F `  a
) ) )
64, 5sylib 190 . . . 4  |-  ( F : A --> B  ->  F  =  ( a  e.  A  |->  ( F `
 a ) ) )
76ineq1d 3344 . . 3  |-  ( F : A --> B  -> 
( F  i^i  ( A  X.  B ) )  =  ( ( a  e.  A  |->  ( F `
 a ) )  i^i  ( A  X.  B ) ) )
83, 7eqtr3d 2292 . 2  |-  ( F : A --> B  ->  F  =  ( (
a  e.  A  |->  ( F `  a ) )  i^i  ( A  X.  B ) ) )
9 df-mpt 4053 . . . 4  |-  ( a  e.  A  |->  ( F `
 a ) )  =  { <. a ,  b >.  |  ( a  e.  A  /\  b  =  ( F `  a ) ) }
10 df-xp 4675 . . . 4  |-  ( A  X.  B )  =  { <. a ,  b
>.  |  ( a  e.  A  /\  b  e.  B ) }
119, 10ineq12i 3343 . . 3  |-  ( ( a  e.  A  |->  ( F `  a ) )  i^i  ( A  X.  B ) )  =  ( { <. a ,  b >.  |  ( a  e.  A  /\  b  =  ( F `  a ) ) }  i^i  { <. a ,  b >.  |  ( a  e.  A  /\  b  e.  B ) } )
12 inopab 4804 . . 3  |-  ( {
<. a ,  b >.  |  ( a  e.  A  /\  b  =  ( F `  a
) ) }  i^i  {
<. a ,  b >.  |  ( a  e.  A  /\  b  e.  B ) } )  =  { <. a ,  b >.  |  ( ( a  e.  A  /\  b  =  ( F `  a )
)  /\  ( a  e.  A  /\  b  e.  B ) ) }
13 anandi 804 . . . . 5  |-  ( ( a  e.  A  /\  ( b  =  ( F `  a )  /\  b  e.  B
) )  <->  ( (
a  e.  A  /\  b  =  ( F `  a ) )  /\  ( a  e.  A  /\  b  e.  B
) ) )
14 ancom 439 . . . . . . 7  |-  ( ( b  =  ( F `
 a )  /\  b  e.  B )  <->  ( b  e.  B  /\  b  =  ( F `  a ) ) )
1514anbi2i 678 . . . . . 6  |-  ( ( a  e.  A  /\  ( b  =  ( F `  a )  /\  b  e.  B
) )  <->  ( a  e.  A  /\  (
b  e.  B  /\  b  =  ( F `  a ) ) ) )
16 anass 633 . . . . . 6  |-  ( ( ( a  e.  A  /\  b  e.  B
)  /\  b  =  ( F `  a ) )  <->  ( a  e.  A  /\  ( b  e.  B  /\  b  =  ( F `  a ) ) ) )
17 eqcom 2260 . . . . . . 7  |-  ( b  =  ( F `  a )  <->  ( F `  a )  =  b )
1817anbi2i 678 . . . . . 6  |-  ( ( ( a  e.  A  /\  b  e.  B
)  /\  b  =  ( F `  a ) )  <->  ( ( a  e.  A  /\  b  e.  B )  /\  ( F `  a )  =  b ) )
1915, 16, 183bitr2i 266 . . . . 5  |-  ( ( a  e.  A  /\  ( b  =  ( F `  a )  /\  b  e.  B
) )  <->  ( (
a  e.  A  /\  b  e.  B )  /\  ( F `  a
)  =  b ) )
2013, 19bitr3i 244 . . . 4  |-  ( ( ( a  e.  A  /\  b  =  ( F `  a )
)  /\  ( a  e.  A  /\  b  e.  B ) )  <->  ( (
a  e.  A  /\  b  e.  B )  /\  ( F `  a
)  =  b ) )
2120opabbii 4057 . . 3  |-  { <. a ,  b >.  |  ( ( a  e.  A  /\  b  =  ( F `  a )
)  /\  ( a  e.  A  /\  b  e.  B ) ) }  =  { <. a ,  b >.  |  ( ( a  e.  A  /\  b  e.  B
)  /\  ( F `  a )  =  b ) }
2211, 12, 213eqtri 2282 . 2  |-  ( ( a  e.  A  |->  ( F `  a ) )  i^i  ( A  X.  B ) )  =  { <. a ,  b >.  |  ( ( a  e.  A  /\  b  e.  B
)  /\  ( F `  a )  =  b ) }
238, 22syl6eq 2306 1  |-  ( F : A --> B  ->  F  =  { <. a ,  b >.  |  ( ( a  e.  A  /\  b  e.  B
)  /\  ( F `  a )  =  b ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    i^i cin 3126    C_ wss 3127   {copab 4050    e. cmpt 4051    X. cxp 4659    Fn wfn 4668   -->wf 4669   ` cfv 4673
This theorem is referenced by:  fgraphxp  26898
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-fv 4689
  Copyright terms: Public domain W3C validator