Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filbcmb Unicode version

Theorem filbcmb 26432
Description: Combine a finite set of lower bounds. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
filbcmb  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  ->  ( A. x  e.  A  E. y  e.  B  A. z  e.  B  (
y  <_  z  ->  ph )  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
Distinct variable groups:    x, A, y, z    x, B, y, z    ph, y
Allowed substitution hints:    ph( x, z)

Proof of Theorem filbcmb
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 8828 . . . . 5  |-  RR  e.  _V
21ssex 4158 . . . 4  |-  ( B 
C_  RR  ->  B  e. 
_V )
3 indexfi 7163 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  _V  /\  A. x  e.  A  E. y  e.  B  A. z  e.  B  (
y  <_  z  ->  ph ) )  ->  E. w  e.  Fin  ( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_ 
z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph ) ) )
433expia 1153 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  _V )  ->  ( A. x  e.  A  E. y  e.  B  A. z  e.  B  ( y  <_ 
z  ->  ph )  ->  E. w  e.  Fin  ( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  ( y  <_  z  ->  ph ) ) ) )
52, 4sylan2 460 . . 3  |-  ( ( A  e.  Fin  /\  B  C_  RR )  -> 
( A. x  e.  A  E. y  e.  B  A. z  e.  B  ( y  <_ 
z  ->  ph )  ->  E. w  e.  Fin  ( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  ( y  <_  z  ->  ph ) ) ) )
653adant2 974 . 2  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  ->  ( A. x  e.  A  E. y  e.  B  A. z  e.  B  (
y  <_  z  ->  ph )  ->  E. w  e.  Fin  ( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_ 
z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph ) ) ) )
7 r19.2z 3543 . . . . . . . . . . . 12  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph ) )  ->  E. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph ) )
8 rexn0 3556 . . . . . . . . . . . . 13  |-  ( E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  ->  w  =/=  (/) )
98rexlimivw 2663 . . . . . . . . . . . 12  |-  ( E. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  ->  w  =/=  (/) )
107, 9syl 15 . . . . . . . . . . 11  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph ) )  ->  w  =/=  (/) )
1110ex 423 . . . . . . . . . 10  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  ->  w  =/=  (/) ) )
12113ad2ant2 977 . . . . . . . . 9  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  ->  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  ->  w  =/=  (/) ) )
1312ad2antrr 706 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  A  =/=  (/) 
/\  B  C_  RR )  /\  w  e.  Fin )  /\  w  C_  B
)  ->  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  ->  w  =/=  (/) ) )
14 sstr 3187 . . . . . . . . . . . . . 14  |-  ( ( w  C_  B  /\  B  C_  RR )  ->  w  C_  RR )
1514ancoms 439 . . . . . . . . . . . . 13  |-  ( ( B  C_  RR  /\  w  C_  B )  ->  w  C_  RR )
16 fimaxre 9701 . . . . . . . . . . . . . 14  |-  ( ( w  C_  RR  /\  w  e.  Fin  /\  w  =/=  (/) )  ->  E. y  e.  w  A. u  e.  w  u  <_  y )
17163expia 1153 . . . . . . . . . . . . 13  |-  ( ( w  C_  RR  /\  w  e.  Fin )  ->  (
w  =/=  (/)  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) )
1815, 17sylan 457 . . . . . . . . . . . 12  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  w  e.  Fin )  ->  ( w  =/=  (/)  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) )
1918anasss 628 . . . . . . . . . . 11  |-  ( ( B  C_  RR  /\  (
w  C_  B  /\  w  e.  Fin )
)  ->  ( w  =/=  (/)  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) )
2019ancom2s 777 . . . . . . . . . 10  |-  ( ( B  C_  RR  /\  (
w  e.  Fin  /\  w  C_  B ) )  ->  ( w  =/=  (/)  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) )
21203ad2antl3 1119 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  /\  (
w  e.  Fin  /\  w  C_  B ) )  ->  ( w  =/=  (/)  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) )
2221anassrs 629 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  A  =/=  (/) 
/\  B  C_  RR )  /\  w  e.  Fin )  /\  w  C_  B
)  ->  ( w  =/=  (/)  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) )
2313, 22syld 40 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  A  =/=  (/) 
/\  B  C_  RR )  /\  w  e.  Fin )  /\  w  C_  B
)  ->  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) )
2423a1dd 42 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  A  =/=  (/) 
/\  B  C_  RR )  /\  w  e.  Fin )  /\  w  C_  B
)  ->  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  ->  ( A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph )  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) ) )
2524ex 423 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  /\  w  e.  Fin )  ->  (
w  C_  B  ->  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )  ->  ( A. y  e.  w  E. x  e.  A  A. z  e.  B  ( y  <_  z  ->  ph )  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) ) ) )
26253impd 1165 . . . 4  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  /\  w  e.  Fin )  ->  (
( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph ) )  ->  E. y  e.  w  A. u  e.  w  u  <_  y ) )
27 nfv 1605 . . . . . . . . . . . 12  |-  F/ y ( B  C_  RR  /\  w  C_  B )
28 nfcv 2419 . . . . . . . . . . . . 13  |-  F/_ y A
29 nfre1 2599 . . . . . . . . . . . . 13  |-  F/ y E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )
3028, 29nfral 2596 . . . . . . . . . . . 12  |-  F/ y A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )
3127, 30nfan 1771 . . . . . . . . . . 11  |-  F/ y ( ( B  C_  RR  /\  w  C_  B
)  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph ) )
32 nfv 1605 . . . . . . . . . . . . . . 15  |-  F/ z ( B  C_  RR  /\  w  C_  B )
33 nfcv 2419 . . . . . . . . . . . . . . . 16  |-  F/_ z A
34 nfcv 2419 . . . . . . . . . . . . . . . . 17  |-  F/_ z
w
35 nfra1 2593 . . . . . . . . . . . . . . . . 17  |-  F/ z A. z  e.  B  ( y  <_  z  ->  ph )
3634, 35nfrex 2598 . . . . . . . . . . . . . . . 16  |-  F/ z E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )
3733, 36nfral 2596 . . . . . . . . . . . . . . 15  |-  F/ z A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )
3832, 37nfan 1771 . . . . . . . . . . . . . 14  |-  F/ z ( ( B  C_  RR  /\  w  C_  B
)  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph ) )
39 nfv 1605 . . . . . . . . . . . . . 14  |-  F/ z ( y  e.  w  /\  A. u  e.  w  u  <_  y )
4038, 39nfan 1771 . . . . . . . . . . . . 13  |-  F/ z ( ( ( B 
C_  RR  /\  w  C_  B )  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph ) )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )
41 breq1 4026 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  v  ->  (
y  <_  z  <->  v  <_  z ) )
4241imbi1d 308 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  v  ->  (
( y  <_  z  ->  ph )  <->  ( v  <_  z  ->  ph ) ) )
4342ralbidv 2563 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  v  ->  ( A. z  e.  B  ( y  <_  z  ->  ph )  <->  A. z  e.  B  ( v  <_  z  ->  ph ) ) )
4443cbvrexv 2765 . . . . . . . . . . . . . . . . . . 19  |-  ( E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  <->  E. v  e.  w  A. z  e.  B  ( v  <_  z  ->  ph ) )
45 rsp 2603 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A. z  e.  B  (
v  <_  z  ->  ph )  ->  ( z  e.  B  ->  ( v  <_  z  ->  ph )
) )
46 ssel2 3175 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( w  C_  B  /\  v  e.  w )  ->  v  e.  B )
47 ssel2 3175 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( B  C_  RR  /\  v  e.  B )  ->  v  e.  RR )
4846, 47sylan2 460 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( B  C_  RR  /\  (
w  C_  B  /\  v  e.  w )
)  ->  v  e.  RR )
4948anassrs 629 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  v  e.  w
)  ->  v  e.  RR )
5049adantlr 695 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( B  C_  RR  /\  w  C_  B
)  /\  ( y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  v  e.  w )  ->  v  e.  RR )
5150adantlr 695 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  v  e.  RR )
52 ssel2 3175 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( w  C_  B  /\  y  e.  w )  ->  y  e.  B )
53 ssel2 3175 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( B  C_  RR  /\  y  e.  B )  ->  y  e.  RR )
5452, 53sylan2 460 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( B  C_  RR  /\  (
w  C_  B  /\  y  e.  w )
)  ->  y  e.  RR )
5554anassrs 629 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  y  e.  w
)  ->  y  e.  RR )
5655adantrr 697 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  ( y  e.  w  /\  A. u  e.  w  u  <_  y ) )  ->  y  e.  RR )
5756ad2antrr 706 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  y  e.  RR )
58 ssel2 3175 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( B  C_  RR  /\  z  e.  B )  ->  z  e.  RR )
5958adantlr 695 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  z  e.  B
)  ->  z  e.  RR )
6059ad2ant2r 727 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( B  C_  RR  /\  w  C_  B
)  /\  ( y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  (
z  e.  B  /\  y  <_  z ) )  ->  z  e.  RR )
6160adantr 451 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  z  e.  RR )
62 breq1 4026 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( u  =  v  ->  (
u  <_  y  <->  v  <_  y ) )
6362rspccva 2883 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A. u  e.  w  u  <_  y  /\  v  e.  w )  ->  v  <_  y )
6463adantll 694 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( y  e.  w  /\  A. u  e.  w  u  <_  y )  /\  v  e.  w )  ->  v  <_  y )
6564adantll 694 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( B  C_  RR  /\  w  C_  B
)  /\  ( y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  v  e.  w )  ->  v  <_  y )
6665adantlr 695 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  v  <_  y )
67 simplrr 737 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  y  <_  z )
6851, 57, 61, 66, 67letrd 8973 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  v  <_  z )
69 pm2.27 35 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  e.  B  ->  (
( z  e.  B  ->  ( v  <_  z  ->  ph ) )  -> 
( v  <_  z  ->  ph ) ) )
7069adantr 451 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( z  e.  B  /\  y  <_  z )  -> 
( ( z  e.  B  ->  ( v  <_  z  ->  ph ) )  ->  ( v  <_ 
z  ->  ph ) ) )
7170ad2antlr 707 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  ( ( z  e.  B  ->  ( v  <_  z  ->  ph ) )  ->  ( v  <_ 
z  ->  ph ) ) )
7268, 71mpid 37 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  ( ( z  e.  B  ->  ( v  <_  z  ->  ph ) )  ->  ph ) )
7345, 72syl5 28 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  v  e.  w )  ->  ( A. z  e.  B  ( v  <_ 
z  ->  ph )  ->  ph ) )
7473adantlr 695 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( B  C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  x  e.  A )  /\  v  e.  w
)  ->  ( A. z  e.  B  (
v  <_  z  ->  ph )  ->  ph ) )
7574rexlimdva 2667 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  x  e.  A )  ->  ( E. v  e.  w  A. z  e.  B  ( v  <_ 
z  ->  ph )  ->  ph ) )
7644, 75syl5bi 208 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  x  e.  A )  ->  ( E. y  e.  w  A. z  e.  B  ( y  <_ 
z  ->  ph )  ->  ph ) )
7776ralimdva 2621 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( B  C_  RR  /\  w  C_  B
)  /\  ( y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  (
z  e.  B  /\  y  <_  z ) )  ->  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )  ->  A. x  e.  A  ph ) )
7877imp 418 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph ) )  ->  A. x  e.  A  ph )
7978an32s 779 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( B 
C_  RR  /\  w  C_  B )  /\  (
y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_ 
z  ->  ph ) )  /\  ( z  e.  B  /\  y  <_ 
z ) )  ->  A. x  e.  A  ph )
8079exp32 588 . . . . . . . . . . . . . 14  |-  ( ( ( ( B  C_  RR  /\  w  C_  B
)  /\  ( y  e.  w  /\  A. u  e.  w  u  <_  y ) )  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph ) )  ->  (
z  e.  B  -> 
( y  <_  z  ->  A. x  e.  A  ph ) ) )
8180an32s 779 . . . . . . . . . . . . 13  |-  ( ( ( ( B  C_  RR  /\  w  C_  B
)  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph ) )  /\  ( y  e.  w  /\  A. u  e.  w  u  <_  y ) )  ->  (
z  e.  B  -> 
( y  <_  z  ->  A. x  e.  A  ph ) ) )
8240, 81ralrimi 2624 . . . . . . . . . . . 12  |-  ( ( ( ( B  C_  RR  /\  w  C_  B
)  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph ) )  /\  ( y  e.  w  /\  A. u  e.  w  u  <_  y ) )  ->  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) )
8382exp32 588 . . . . . . . . . . 11  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph ) )  -> 
( y  e.  w  ->  ( A. u  e.  w  u  <_  y  ->  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) ) )
8431, 83reximdai 2651 . . . . . . . . . 10  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph ) )  -> 
( E. y  e.  w  A. u  e.  w  u  <_  y  ->  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
8584adantrr 697 . . . . . . . . 9  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_ 
z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph ) ) )  -> 
( E. y  e.  w  A. u  e.  w  u  <_  y  ->  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
86 ssrexv 3238 . . . . . . . . . 10  |-  ( w 
C_  B  ->  ( E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph )  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
8786ad2antlr 707 . . . . . . . . 9  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_ 
z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph ) ) )  -> 
( E. y  e.  w  A. z  e.  B  ( y  <_ 
z  ->  A. x  e.  A  ph )  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
8885, 87syld 40 . . . . . . . 8  |-  ( ( ( B  C_  RR  /\  w  C_  B )  /\  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_ 
z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph ) ) )  -> 
( E. y  e.  w  A. u  e.  w  u  <_  y  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
8988exp43 595 . . . . . . 7  |-  ( B 
C_  RR  ->  ( w 
C_  B  ->  ( A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )  ->  ( A. y  e.  w  E. x  e.  A  A. z  e.  B  ( y  <_  z  ->  ph )  ->  ( E. y  e.  w  A. u  e.  w  u  <_  y  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) ) ) ) )
90893impd 1165 . . . . . 6  |-  ( B 
C_  RR  ->  ( ( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  ( y  <_  z  ->  ph ) )  ->  ( E. y  e.  w  A. u  e.  w  u  <_  y  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) ) )
91903ad2ant3 978 . . . . 5  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  ->  ( ( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  ( y  <_  z  ->  ph ) )  ->  ( E. y  e.  w  A. u  e.  w  u  <_  y  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) ) )
9291adantr 451 . . . 4  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  /\  w  e.  Fin )  ->  (
( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph ) )  ->  ( E. y  e.  w  A. u  e.  w  u  <_  y  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) ) )
9326, 92mpdd 36 . . 3  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  /\  w  e.  Fin )  ->  (
( w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  ( y  <_  z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  (
y  <_  z  ->  ph ) )  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
9493rexlimdva 2667 . 2  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  ->  ( E. w  e.  Fin  (
w  C_  B  /\  A. x  e.  A  E. y  e.  w  A. z  e.  B  (
y  <_  z  ->  ph )  /\  A. y  e.  w  E. x  e.  A  A. z  e.  B  ( y  <_  z  ->  ph ) )  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
956, 94syld 40 1  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  B  C_  RR )  ->  ( A. x  e.  A  E. y  e.  B  A. z  e.  B  (
y  <_  z  ->  ph )  ->  E. y  e.  B  A. z  e.  B  ( y  <_  z  ->  A. x  e.  A  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   _Vcvv 2788    C_ wss 3152   (/)c0 3455   class class class wbr 4023   Fincfn 6863   RRcr 8736    <_ cle 8868
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-pre-lttri 8811  ax-pre-lttrn 8812
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1o 6479  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873
  Copyright terms: Public domain W3C validator