MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filn0 Unicode version

Theorem filn0 17484
Description: The empty set is not a filter. Remark below def. 1 of [BourbakiTop1] p. I.36. (Contributed by FL, 30-Oct-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filn0  |-  ( F  e.  ( Fil `  X
)  ->  F  =/=  (/) )

Proof of Theorem filn0
StepHypRef Expression
1 filtop 17477 . 2  |-  ( F  e.  ( Fil `  X
)  ->  X  e.  F )
2 ne0i 3403 . 2  |-  ( X  e.  F  ->  F  =/=  (/) )
31, 2syl 17 1  |-  ( F  e.  ( Fil `  X
)  ->  F  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    e. wcel 1621    =/= wne 2419   (/)c0 3397   ` cfv 4638   Filcfil 17467
This theorem is referenced by:  ufileu  17541  filufint  17542  uffixfr  17545  uffix2  17546  uffixsn  17547  hausflim  17603  fclsval  17630  isfcls  17631  fclsopn  17636  fclsfnflim  17649  filnetlem4  25662
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fv 4654  df-fbas 17447  df-fil 17468
  Copyright terms: Public domain W3C validator