MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filn0 Unicode version

Theorem filn0 17551
Description: The empty set is not a filter. Remark below def. 1 of [BourbakiTop1] p. I.36. (Contributed by FL, 30-Oct-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filn0  |-  ( F  e.  ( Fil `  X
)  ->  F  =/=  (/) )

Proof of Theorem filn0
StepHypRef Expression
1 filtop 17544 . 2  |-  ( F  e.  ( Fil `  X
)  ->  X  e.  F )
2 ne0i 3462 . 2  |-  ( X  e.  F  ->  F  =/=  (/) )
31, 2syl 17 1  |-  ( F  e.  ( Fil `  X
)  ->  F  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    e. wcel 1688    =/= wne 2447   (/)c0 3456   ` cfv 5221   Filcfil 17534
This theorem is referenced by:  ufileu  17608  filufint  17609  uffixfr  17612  uffix2  17613  uffixsn  17614  hausflim  17670  fclsval  17697  isfcls  17698  fclsopn  17703  fclsfnflim  17716  filnetlem4  25729
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fv 5229  df-fbas 17514  df-fil 17535
  Copyright terms: Public domain W3C validator