MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimaxre Unicode version

Theorem fimaxre 9703
Description: A finite set of real numbers has a maximum. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fimaxre  |-  ( ( A  C_  RR  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  y  <_  x )
Distinct variable group:    x, A, y

Proof of Theorem fimaxre
StepHypRef Expression
1 ltso 8905 . . . 4  |-  <  Or  RR
2 soss 4334 . . . 4  |-  ( A 
C_  RR  ->  (  < 
Or  RR  ->  <  Or  A ) )
31, 2mpi 16 . . 3  |-  ( A 
C_  RR  ->  <  Or  A )
4 fimaxg 7106 . . 3  |-  ( (  <  Or  A  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  y  < 
x ) )
53, 4syl3an1 1215 . 2  |-  ( ( A  C_  RR  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  y  < 
x ) )
6 ssel 3176 . . . . . . . . 9  |-  ( A 
C_  RR  ->  ( x  e.  A  ->  x  e.  RR ) )
7 ssel 3176 . . . . . . . . 9  |-  ( A 
C_  RR  ->  ( y  e.  A  ->  y  e.  RR ) )
86, 7anim12d 546 . . . . . . . 8  |-  ( A 
C_  RR  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( x  e.  RR  /\  y  e.  RR ) ) )
98imp 418 . . . . . . 7  |-  ( ( A  C_  RR  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( x  e.  RR  /\  y  e.  RR ) )
10 leloe 8910 . . . . . . . . . 10  |-  ( ( y  e.  RR  /\  x  e.  RR )  ->  ( y  <_  x  <->  ( y  <  x  \/  y  =  x ) ) )
1110ancoms 439 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( y  <_  x  <->  ( y  <  x  \/  y  =  x ) ) )
12 equcom 1649 . . . . . . . . . . 11  |-  ( y  =  x  <->  x  =  y )
1312orbi2i 505 . . . . . . . . . 10  |-  ( ( y  <  x  \/  y  =  x )  <-> 
( y  <  x  \/  x  =  y
) )
14 orcom 376 . . . . . . . . . 10  |-  ( ( y  <  x  \/  x  =  y )  <-> 
( x  =  y  \/  y  <  x
) )
15 neor 2532 . . . . . . . . . 10  |-  ( ( x  =  y  \/  y  <  x )  <-> 
( x  =/=  y  ->  y  <  x ) )
1613, 14, 153bitri 262 . . . . . . . . 9  |-  ( ( y  <  x  \/  y  =  x )  <-> 
( x  =/=  y  ->  y  <  x ) )
1711, 16syl6bb 252 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( y  <_  x  <->  ( x  =/=  y  -> 
y  <  x )
) )
1817biimprd 214 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( x  =/=  y  ->  y  <  x )  ->  y  <_  x ) )
199, 18syl 15 . . . . . 6  |-  ( ( A  C_  RR  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( (
x  =/=  y  -> 
y  <  x )  ->  y  <_  x )
)
2019anassrs 629 . . . . 5  |-  ( ( ( A  C_  RR  /\  x  e.  A )  /\  y  e.  A
)  ->  ( (
x  =/=  y  -> 
y  <  x )  ->  y  <_  x )
)
2120ralimdva 2623 . . . 4  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  ( A. y  e.  A  ( x  =/=  y  ->  y  <  x )  ->  A. y  e.  A  y  <_  x ) )
2221reximdva 2657 . . 3  |-  ( A 
C_  RR  ->  ( E. x  e.  A  A. y  e.  A  (
x  =/=  y  -> 
y  <  x )  ->  E. x  e.  A  A. y  e.  A  y  <_  x ) )
23223ad2ant1 976 . 2  |-  ( ( A  C_  RR  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  ( E. x  e.  A  A. y  e.  A  (
x  =/=  y  -> 
y  <  x )  ->  E. x  e.  A  A. y  e.  A  y  <_  x ) )
245, 23mpd 14 1  |-  ( ( A  C_  RR  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  y  <_  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686    =/= wne 2448   A.wral 2545   E.wrex 2546    C_ wss 3154   (/)c0 3457   class class class wbr 4025    Or wor 4315   Fincfn 6865   RRcr 8738    < clt 8869    <_ cle 8870
This theorem is referenced by:  fimaxre2  9704  0ram2  13070  0ramcl  13072  ballotlemfc0  23053  ballotlemfcc  23054  fimaxreOLD  26441  filbcmb  26443
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-resscn 8796  ax-pre-lttri 8813  ax-pre-lttrn 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-1o 6481  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875
  Copyright terms: Public domain W3C validator