MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2 Unicode version

Theorem fin1a2 7974
Description: Every Ia-finite set is II-finite. Theorem 1 of [Levy58], p. 3. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin1a2  |-  ( A  e. FinIa  ->  A  e. FinII )

Proof of Theorem fin1a2
StepHypRef Expression
1 elpwi 3574 . . . 4  |-  ( b  e.  ~P A  -> 
b  C_  A )
2 fin1ai 7852 . . . . 5  |-  ( ( A  e. FinIa  /\  b  C_  A )  ->  (
b  e.  Fin  \/  ( A  \  b
)  e.  Fin )
)
3 fin12 7972 . . . . . 6  |-  ( ( A  \  b )  e.  Fin  ->  ( A  \  b )  e. FinII )
43orim2i 506 . . . . 5  |-  ( ( b  e.  Fin  \/  ( A  \  b
)  e.  Fin )  ->  ( b  e.  Fin  \/  ( A  \  b
)  e. FinII ) )
52, 4syl 17 . . . 4  |-  ( ( A  e. FinIa  /\  b  C_  A )  ->  (
b  e.  Fin  \/  ( A  \  b
)  e. FinII ) )
61, 5sylan2 462 . . 3  |-  ( ( A  e. FinIa  /\  b  e.  ~P A )  ->  (
b  e.  Fin  \/  ( A  \  b
)  e. FinII ) )
76ralrimiva 2597 . 2  |-  ( A  e. FinIa  ->  A. b  e.  ~P  A ( b  e. 
Fin  \/  ( A  \  b )  e. FinII ) )
8 fin1a2s 7973 . 2  |-  ( ( A  e. FinIa  /\  A. b  e.  ~P  A ( b  e.  Fin  \/  ( A  \  b )  e. FinII ) )  ->  A  e. FinII )
97, 8mpdan 652 1  |-  ( A  e. FinIa  ->  A  e. FinII )
Colors of variables: wff set class
Syntax hints:    -> wi 6    \/ wo 359    /\ wa 360    e. wcel 1621   A.wral 2516    \ cdif 3091    C_ wss 3094   ~Pcpw 3566   Fincfn 6796  FinIacfin1a 7837  FinIIcfin2 7838
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-rpss 6176  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-seqom 6393  df-1o 6412  df-2o 6413  df-oadd 6416  df-omul 6417  df-er 6593  df-map 6707  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-wdom 7206  df-card 7505  df-fin1a 7844  df-fin2 7845  df-fin4 7846  df-fin3 7847
  Copyright terms: Public domain W3C validator