MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findcard2 Unicode version

Theorem findcard2 7185
Description: Schema for induction on the cardinality of a finite set. The inductive step shows that the result is true if one more element is added to the set. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 8-Jul-2010.)
Hypotheses
Ref Expression
findcard2.1  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
findcard2.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
findcard2.3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ph  <->  th )
)
findcard2.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
findcard2.5  |-  ps
findcard2.6  |-  ( y  e.  Fin  ->  ( ch  ->  th ) )
Assertion
Ref Expression
findcard2  |-  ( A  e.  Fin  ->  ta )
Distinct variable groups:    x, y,
z, A    ps, x    ch, x    th, x    ta, x    ph, y, z
Allowed substitution hints:    ph( x)    ps( y, z)    ch( y, z)    th( y, z)    ta( y,
z)

Proof of Theorem findcard2
Dummy variables  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 findcard2.4 . 2  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
2 isfi 6970 . . 3  |-  ( x  e.  Fin  <->  E. w  e.  om  x  ~~  w
)
3 breq2 4106 . . . . . . . 8  |-  ( w  =  (/)  ->  ( x 
~~  w  <->  x  ~~  (/) ) )
43imbi1d 308 . . . . . . 7  |-  ( w  =  (/)  ->  ( ( x  ~~  w  ->  ph )  <->  ( x  ~~  (/) 
->  ph ) ) )
54albidv 1625 . . . . . 6  |-  ( w  =  (/)  ->  ( A. x ( x  ~~  w  ->  ph )  <->  A. x
( x  ~~  (/)  ->  ph )
) )
6 breq2 4106 . . . . . . . 8  |-  ( w  =  v  ->  (
x  ~~  w  <->  x  ~~  v ) )
76imbi1d 308 . . . . . . 7  |-  ( w  =  v  ->  (
( x  ~~  w  ->  ph )  <->  ( x  ~~  v  ->  ph )
) )
87albidv 1625 . . . . . 6  |-  ( w  =  v  ->  ( A. x ( x  ~~  w  ->  ph )  <->  A. x
( x  ~~  v  ->  ph ) ) )
9 breq2 4106 . . . . . . . 8  |-  ( w  =  suc  v  -> 
( x  ~~  w  <->  x 
~~  suc  v )
)
109imbi1d 308 . . . . . . 7  |-  ( w  =  suc  v  -> 
( ( x  ~~  w  ->  ph )  <->  ( x  ~~  suc  v  ->  ph )
) )
1110albidv 1625 . . . . . 6  |-  ( w  =  suc  v  -> 
( A. x ( x  ~~  w  ->  ph )  <->  A. x ( x 
~~  suc  v  ->  ph ) ) )
12 en0 7009 . . . . . . . 8  |-  ( x 
~~  (/)  <->  x  =  (/) )
13 findcard2.5 . . . . . . . . 9  |-  ps
14 findcard2.1 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
1513, 14mpbiri 224 . . . . . . . 8  |-  ( x  =  (/)  ->  ph )
1612, 15sylbi 187 . . . . . . 7  |-  ( x 
~~  (/)  ->  ph )
1716ax-gen 1546 . . . . . 6  |-  A. x
( x  ~~  (/)  ->  ph )
18 nsuceq0 4551 . . . . . . . . . . . 12  |-  suc  v  =/=  (/)
19 breq1 4105 . . . . . . . . . . . . . . . 16  |-  ( w  =  (/)  ->  ( w 
~~  suc  v  <->  (/)  ~~  suc  v ) )
2019anbi2d 684 . . . . . . . . . . . . . . 15  |-  ( w  =  (/)  ->  ( ( v  e.  om  /\  w  ~~  suc  v )  <-> 
( v  e.  om  /\  (/)  ~~  suc  v ) ) )
21 peano1 4754 . . . . . . . . . . . . . . . . . 18  |-  (/)  e.  om
22 peano2 4755 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  om  ->  suc  v  e.  om )
23 nneneq 7129 . . . . . . . . . . . . . . . . . 18  |-  ( (
(/)  e.  om  /\  suc  v  e.  om )  ->  ( (/)  ~~  suc  v  <->  (/)  =  suc  v ) )
2421, 22, 23sylancr 644 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  om  ->  ( (/)  ~~  suc  v  <->  (/)  =  suc  v ) )
2524biimpa 470 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  om  /\  (/)  ~~  suc  v )  ->  (/)  =  suc  v )
2625eqcomd 2363 . . . . . . . . . . . . . . 15  |-  ( ( v  e.  om  /\  (/)  ~~  suc  v )  ->  suc  v  =  (/) )
2720, 26syl6bi 219 . . . . . . . . . . . . . 14  |-  ( w  =  (/)  ->  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  suc  v  =  (/) ) )
2827com12 27 . . . . . . . . . . . . 13  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  ( w  =  (/)  ->  suc  v  =  (/) ) )
2928necon3d 2559 . . . . . . . . . . . 12  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  ( suc  v  =/=  (/)  ->  w  =/=  (/) ) )
3018, 29mpi 16 . . . . . . . . . . 11  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  w  =/=  (/) )
3130ex 423 . . . . . . . . . 10  |-  ( v  e.  om  ->  (
w  ~~  suc  v  ->  w  =/=  (/) ) )
32 n0 3540 . . . . . . . . . . . 12  |-  ( w  =/=  (/)  <->  E. z  z  e.  w )
33 dif1en 7178 . . . . . . . . . . . . . . 15  |-  ( ( v  e.  om  /\  w  ~~  suc  v  /\  z  e.  w )  ->  ( w  \  {
z } )  ~~  v )
34333expia 1153 . . . . . . . . . . . . . 14  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  ( z  e.  w  ->  ( w  \  { z } ) 
~~  v ) )
35 snssi 3838 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  w  ->  { z }  C_  w )
36 uncom 3395 . . . . . . . . . . . . . . . . . . 19  |-  ( ( w  \  { z } )  u.  {
z } )  =  ( { z }  u.  ( w  \  { z } ) )
37 undif 3610 . . . . . . . . . . . . . . . . . . . 20  |-  ( { z }  C_  w  <->  ( { z }  u.  ( w  \  { z } ) )  =  w )
3837biimpi 186 . . . . . . . . . . . . . . . . . . 19  |-  ( { z }  C_  w  ->  ( { z }  u.  ( w  \  { z } ) )  =  w )
3936, 38syl5eq 2402 . . . . . . . . . . . . . . . . . 18  |-  ( { z }  C_  w  ->  ( ( w  \  { z } )  u.  { z } )  =  w )
40 vex 2867 . . . . . . . . . . . . . . . . . . . . 21  |-  w  e. 
_V
41 difexg 4241 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  e.  _V  ->  (
w  \  { z } )  e.  _V )
4240, 41ax-mp 8 . . . . . . . . . . . . . . . . . . . 20  |-  ( w 
\  { z } )  e.  _V
43 breq1 4105 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  ( w  \  { z } )  ->  ( y  ~~  v 
<->  ( w  \  {
z } )  ~~  v ) )
4443anbi2d 684 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  ( w  \  { z } )  ->  ( ( v  e.  om  /\  y  ~~  v )  <->  ( v  e.  om  /\  ( w 
\  { z } )  ~~  v ) ) )
45 uneq1 3398 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  =  ( w  \  { z } )  ->  ( y  u. 
{ z } )  =  ( ( w 
\  { z } )  u.  { z } ) )
46 dfsbcq 3069 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  u.  { z } )  =  ( ( w  \  {
z } )  u. 
{ z } )  ->  ( [. (
y  u.  { z } )  /  x ]. ph  <->  [. ( ( w 
\  { z } )  u.  { z } )  /  x ]. ph ) )
4745, 46syl 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  ( w  \  { z } )  ->  ( [. (
y  u.  { z } )  /  x ]. ph  <->  [. ( ( w 
\  { z } )  u.  { z } )  /  x ]. ph ) )
4847imbi2d 307 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  ( w  \  { z } )  ->  ( ( A. x ( x  ~~  v  ->  ph )  ->  [. (
y  u.  { z } )  /  x ]. ph )  <->  ( A. x ( x  ~~  v  ->  ph )  ->  [. (
( w  \  {
z } )  u. 
{ z } )  /  x ]. ph )
) )
4944, 48imbi12d 311 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( w  \  { z } )  ->  ( ( ( v  e.  om  /\  y  ~~  v )  -> 
( A. x ( x  ~~  v  ->  ph )  ->  [. (
y  u.  { z } )  /  x ]. ph ) )  <->  ( (
v  e.  om  /\  ( w  \  { z } )  ~~  v
)  ->  ( A. x ( x  ~~  v  ->  ph )  ->  [. (
( w  \  {
z } )  u. 
{ z } )  /  x ]. ph )
) ) )
50 breq1 4105 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  y  ->  (
x  ~~  v  <->  y  ~~  v ) )
51 findcard2.2 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
5250, 51imbi12d 311 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  y  ->  (
( x  ~~  v  ->  ph )  <->  ( y  ~~  v  ->  ch )
) )
5352spv 2003 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A. x ( x  ~~  v  ->  ph )  ->  (
y  ~~  v  ->  ch ) )
54 rspe 2680 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( v  e.  om  /\  y  ~~  v )  ->  E. v  e.  om  y  ~~  v )
55 isfi 6970 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  Fin  <->  E. v  e.  om  y  ~~  v
)
5654, 55sylibr 203 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( v  e.  om  /\  y  ~~  v )  -> 
y  e.  Fin )
57 pm2.27 35 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y 
~~  v  ->  (
( y  ~~  v  ->  ch )  ->  ch ) )
5857adantl 452 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( v  e.  om  /\  y  ~~  v )  -> 
( ( y  ~~  v  ->  ch )  ->  ch ) )
59 findcard2.6 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  Fin  ->  ( ch  ->  th ) )
6056, 58, 59sylsyld 52 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( v  e.  om  /\  y  ~~  v )  -> 
( ( y  ~~  v  ->  ch )  ->  th ) )
6153, 60syl5 28 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( v  e.  om  /\  y  ~~  v )  -> 
( A. x ( x  ~~  v  ->  ph )  ->  th )
)
62 vex 2867 . . . . . . . . . . . . . . . . . . . . . . 23  |-  y  e. 
_V
63 snex 4295 . . . . . . . . . . . . . . . . . . . . . . 23  |-  { z }  e.  _V
6462, 63unex 4597 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  u.  { z } )  e.  _V
65 findcard2.3 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ph  <->  th )
)
6664, 65sbcie 3101 . . . . . . . . . . . . . . . . . . . . 21  |-  ( [. ( y  u.  {
z } )  /  x ]. ph  <->  th )
6761, 66syl6ibr 218 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( v  e.  om  /\  y  ~~  v )  -> 
( A. x ( x  ~~  v  ->  ph )  ->  [. (
y  u.  { z } )  /  x ]. ph ) )
6842, 49, 67vtocl 2914 . . . . . . . . . . . . . . . . . . 19  |-  ( ( v  e.  om  /\  ( w  \  { z } )  ~~  v
)  ->  ( A. x ( x  ~~  v  ->  ph )  ->  [. (
( w  \  {
z } )  u. 
{ z } )  /  x ]. ph )
)
69 dfsbcq 3069 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( w  \  {
z } )  u. 
{ z } )  =  w  ->  ( [. ( ( w  \  { z } )  u.  { z } )  /  x ]. ph  <->  [. w  /  x ]. ph ) )
7069imbi2d 307 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( w  \  {
z } )  u. 
{ z } )  =  w  ->  (
( A. x ( x  ~~  v  ->  ph )  ->  [. (
( w  \  {
z } )  u. 
{ z } )  /  x ]. ph )  <->  ( A. x ( x 
~~  v  ->  ph )  ->  [. w  /  x ]. ph ) ) )
7168, 70syl5ib 210 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  \  {
z } )  u. 
{ z } )  =  w  ->  (
( v  e.  om  /\  ( w  \  {
z } )  ~~  v )  ->  ( A. x ( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
) )
7235, 39, 713syl 18 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  w  ->  (
( v  e.  om  /\  ( w  \  {
z } )  ~~  v )  ->  ( A. x ( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
) )
7372exp3a 425 . . . . . . . . . . . . . . . 16  |-  ( z  e.  w  ->  (
v  e.  om  ->  ( ( w  \  {
z } )  ~~  v  ->  ( A. x
( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
) ) )
7473com12 27 . . . . . . . . . . . . . . 15  |-  ( v  e.  om  ->  (
z  e.  w  -> 
( ( w  \  { z } ) 
~~  v  ->  ( A. x ( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
) ) )
7574adantr 451 . . . . . . . . . . . . . 14  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  ( z  e.  w  ->  ( (
w  \  { z } )  ~~  v  ->  ( A. x ( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
) ) )
7634, 75mpdd 36 . . . . . . . . . . . . 13  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  ( z  e.  w  ->  ( A. x ( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
) )
7776exlimdv 1636 . . . . . . . . . . . 12  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  ( E. z 
z  e.  w  -> 
( A. x ( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
) )
7832, 77syl5bi 208 . . . . . . . . . . 11  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  ( w  =/=  (/)  ->  ( A. x
( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
) )
7978ex 423 . . . . . . . . . 10  |-  ( v  e.  om  ->  (
w  ~~  suc  v  -> 
( w  =/=  (/)  ->  ( A. x ( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
) ) )
8031, 79mpdd 36 . . . . . . . . 9  |-  ( v  e.  om  ->  (
w  ~~  suc  v  -> 
( A. x ( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
) )
8180com23 72 . . . . . . . 8  |-  ( v  e.  om  ->  ( A. x ( x  ~~  v  ->  ph )  ->  (
w  ~~  suc  v  ->  [. w  /  x ]. ph ) ) )
8281alrimdv 1633 . . . . . . 7  |-  ( v  e.  om  ->  ( A. x ( x  ~~  v  ->  ph )  ->  A. w
( w  ~~  suc  v  ->  [. w  /  x ]. ph ) ) )
83 nfv 1619 . . . . . . . 8  |-  F/ w
( x  ~~  suc  v  ->  ph )
84 nfv 1619 . . . . . . . . 9  |-  F/ x  w  ~~  suc  v
85 nfsbc1v 3086 . . . . . . . . 9  |-  F/ x [. w  /  x ]. ph
8684, 85nfim 1815 . . . . . . . 8  |-  F/ x
( w  ~~  suc  v  ->  [. w  /  x ]. ph )
87 breq1 4105 . . . . . . . . 9  |-  ( x  =  w  ->  (
x  ~~  suc  v  <->  w  ~~  suc  v ) )
88 sbceq1a 3077 . . . . . . . . 9  |-  ( x  =  w  ->  ( ph 
<-> 
[. w  /  x ]. ph ) )
8987, 88imbi12d 311 . . . . . . . 8  |-  ( x  =  w  ->  (
( x  ~~  suc  v  ->  ph )  <->  ( w  ~~  suc  v  ->  [. w  /  x ]. ph )
) )
9083, 86, 89cbval 1989 . . . . . . 7  |-  ( A. x ( x  ~~  suc  v  ->  ph )  <->  A. w ( w  ~~  suc  v  ->  [. w  /  x ]. ph )
)
9182, 90syl6ibr 218 . . . . . 6  |-  ( v  e.  om  ->  ( A. x ( x  ~~  v  ->  ph )  ->  A. x
( x  ~~  suc  v  ->  ph ) ) )
925, 8, 11, 17, 91finds1 4764 . . . . 5  |-  ( w  e.  om  ->  A. x
( x  ~~  w  ->  ph ) )
939219.21bi 1759 . . . 4  |-  ( w  e.  om  ->  (
x  ~~  w  ->  ph ) )
9493rexlimiv 2737 . . 3  |-  ( E. w  e.  om  x  ~~  w  ->  ph )
952, 94sylbi 187 . 2  |-  ( x  e.  Fin  ->  ph )
961, 95vtoclga 2925 1  |-  ( A  e.  Fin  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1540   E.wex 1541    = wceq 1642    e. wcel 1710    =/= wne 2521   E.wrex 2620   _Vcvv 2864   [.wsbc 3067    \ cdif 3225    u. cun 3226    C_ wss 3228   (/)c0 3531   {csn 3716   class class class wbr 4102   suc csuc 4473   omcom 4735    ~~ cen 6945   Fincfn 6948
This theorem is referenced by:  findcard2s  7186  frfi  7189  fnfi  7221  iunfi  7231  finsschain  7249  infdiffi  7445  fin1a2lem10  8122  wunfi  8430  rexfiuz  11921  drsdirfi  14165  fiuncmp  17231  finiunmbl  18999  findcard2OLD  25731  heibor1lem  25856  pclfinclN  30191
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-br 4103  df-opab 4157  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-1o 6563  df-er 6744  df-en 6949  df-fin 6952
  Copyright terms: Public domain W3C validator