MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finds Unicode version

Theorem finds 4573
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction hypothesis. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 14-Apr-1995.)
Hypotheses
Ref Expression
finds.1  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
finds.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
finds.3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
finds.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
finds.5  |-  ps
finds.6  |-  ( y  e.  om  ->  ( ch  ->  th ) )
Assertion
Ref Expression
finds  |-  ( A  e.  om  ->  ta )
Distinct variable groups:    x, y    x, A    ps, x    ch, x    th, x    ta, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    A( y)

Proof of Theorem finds
StepHypRef Expression
1 finds.5 . . . . 5  |-  ps
2 0ex 4047 . . . . . 6  |-  (/)  e.  _V
3 finds.1 . . . . . 6  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
42, 3elab 2851 . . . . 5  |-  ( (/)  e.  { x  |  ph } 
<->  ps )
51, 4mpbir 202 . . . 4  |-  (/)  e.  {
x  |  ph }
6 finds.6 . . . . . 6  |-  ( y  e.  om  ->  ( ch  ->  th ) )
7 vex 2730 . . . . . . 7  |-  y  e. 
_V
8 finds.2 . . . . . . 7  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
97, 8elab 2851 . . . . . 6  |-  ( y  e.  { x  | 
ph }  <->  ch )
107sucex 4493 . . . . . . 7  |-  suc  y  e.  _V
11 finds.3 . . . . . . 7  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
1210, 11elab 2851 . . . . . 6  |-  ( suc  y  e.  { x  |  ph }  <->  th )
136, 9, 123imtr4g 263 . . . . 5  |-  ( y  e.  om  ->  (
y  e.  { x  |  ph }  ->  suc  y  e.  { x  |  ph } ) )
1413rgen 2570 . . . 4  |-  A. y  e.  om  ( y  e. 
{ x  |  ph }  ->  suc  y  e.  { x  |  ph }
)
15 peano5 4570 . . . 4  |-  ( (
(/)  e.  { x  |  ph }  /\  A. y  e.  om  (
y  e.  { x  |  ph }  ->  suc  y  e.  { x  |  ph } ) )  ->  om  C_  { x  |  ph } )
165, 14, 15mp2an 656 . . 3  |-  om  C_  { x  |  ph }
1716sseli 3099 . 2  |-  ( A  e.  om  ->  A  e.  { x  |  ph } )
18 finds.4 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
1918elabg 2852 . 2  |-  ( A  e.  om  ->  ( A  e.  { x  |  ph }  <->  ta )
)
2017, 19mpbid 203 1  |-  ( A  e.  om  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    = wceq 1619    e. wcel 1621   {cab 2239   A.wral 2509    C_ wss 3078   (/)c0 3362   suc csuc 4287   omcom 4547
This theorem is referenced by:  findsg  4574  findes  4577  seqomlem1  6348  nna0r  6493  nnm0r  6494  nnawordi  6505  nneob  6536  nneneq  6929  pssnn  6966  inf3lem1  7213  inf3lem2  7214  cantnfval2  7254  cantnfp1lem3  7266  r1fin  7329  ackbij1lem14  7743  ackbij1lem16  7745  ackbij1  7748  ackbij2lem2  7750  ackbij2lem3  7751  infpssrlem4  7816  fin23lem14  7843  fin23lem34  7856  itunitc1  7930  ituniiun  7932  om2uzuzi  10890  om2uzlti  10891  om2uzrdg  10897  uzrdgxfr  10907  hashgadd  11237  trpredmintr  23402  findfvcl  24065
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-tr 4011  df-eprel 4198  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548
  Copyright terms: Public domain W3C validator