Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  finds1 Unicode version

Theorem finds1 4865
 Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction hypothesis. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 22-Mar-2006.)
Hypotheses
Ref Expression
finds1.1
finds1.2
finds1.3
finds1.4
finds1.5
Assertion
Ref Expression
finds1
Distinct variable groups:   ,   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()   ()

Proof of Theorem finds1
StepHypRef Expression
1 eqid 2435 . 2
2 finds1.1 . . 3
3 finds1.2 . . 3
4 finds1.3 . . 3
5 finds1.4 . . . 4
65a1i 11 . . 3
7 finds1.5 . . . 4
87a1d 23 . . 3
92, 3, 4, 6, 8finds2 4864 . 2
101, 9mpi 17 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wceq 1652   wcel 1725  c0 3620   csuc 4575  com 4836 This theorem is referenced by:  findcard  7338  findcard2  7339  pwfi  7393  alephfplem3  7976  pwsdompw  8073  hsmexlem4  8298 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395  ax-un 4692 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-tr 4295  df-eprel 4486  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837
 Copyright terms: Public domain W3C validator