Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  finds2 Structured version   Unicode version

Theorem finds2 4865
 Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction hypothesis. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 29-Nov-2002.)
Hypotheses
Ref Expression
finds2.1
finds2.2
finds2.3
finds2.4
finds2.5
Assertion
Ref Expression
finds2
Distinct variable groups:   ,,   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()   ()

Proof of Theorem finds2
StepHypRef Expression
1 finds2.4 . . . . 5
2 0ex 4331 . . . . . 6
3 finds2.1 . . . . . . 7
43imbi2d 308 . . . . . 6
52, 4elab 3074 . . . . 5
61, 5mpbir 201 . . . 4
7 finds2.5 . . . . . . 7
87a2d 24 . . . . . 6
9 vex 2951 . . . . . . 7
10 finds2.2 . . . . . . . 8
1110imbi2d 308 . . . . . . 7
129, 11elab 3074 . . . . . 6
139sucex 4783 . . . . . . 7
14 finds2.3 . . . . . . . 8
1514imbi2d 308 . . . . . . 7
1613, 15elab 3074 . . . . . 6
178, 12, 163imtr4g 262 . . . . 5
1817rgen 2763 . . . 4
19 peano5 4860 . . . 4
206, 18, 19mp2an 654 . . 3
2120sseli 3336 . 2
22 abid 2423 . 2
2321, 22sylib 189 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wceq 1652   wcel 1725  cab 2421  wral 2697   wss 3312  c0 3620   csuc 4575  com 4837 This theorem is referenced by:  finds1  4866  onnseq  6598  nnacl  6846  nnmcl  6847  nnecl  6848  nnacom  6852  nnaass  6857  nndi  6858  nnmass  6859  nnmsucr  6860  nnmcom  6861  nnmordi  6866  omsmolem  6888  isinf  7314  unblem2  7352  fiint  7375  dffi3  7428  card2inf  7515  cantnfle  7618  cantnflt  7619  cantnflem1  7637  cnfcom  7649  trcl  7656  fseqenlem1  7897  infpssrlem3  8177  fin23lem26  8197  axdc3lem2  8323  axdc4lem  8327  axdclem2  8392  wunr1om  8586  wuncval2  8614  tskr1om  8634  grothomex  8696  peano5nni  9995  neibastop2lem  26380 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395  ax-un 4693 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-tr 4295  df-eprel 4486  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838
 Copyright terms: Public domain W3C validator