MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finds2 Unicode version

Theorem finds2 4806
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction hypothesis. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 29-Nov-2002.)
Hypotheses
Ref Expression
finds2.1  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
finds2.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
finds2.3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
finds2.4  |-  ( ta 
->  ps )
finds2.5  |-  ( y  e.  om  ->  ( ta  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
finds2  |-  ( x  e.  om  ->  ( ta  ->  ph ) )
Distinct variable groups:    x, y, ta    ps, x    ch, x    th, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)

Proof of Theorem finds2
StepHypRef Expression
1 finds2.4 . . . . 5  |-  ( ta 
->  ps )
2 0ex 4273 . . . . . 6  |-  (/)  e.  _V
3 finds2.1 . . . . . . 7  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
43imbi2d 308 . . . . . 6  |-  ( x  =  (/)  ->  ( ( ta  ->  ph )  <->  ( ta  ->  ps ) ) )
52, 4elab 3018 . . . . 5  |-  ( (/)  e.  { x  |  ( ta  ->  ph ) }  <-> 
( ta  ->  ps ) )
61, 5mpbir 201 . . . 4  |-  (/)  e.  {
x  |  ( ta 
->  ph ) }
7 finds2.5 . . . . . . 7  |-  ( y  e.  om  ->  ( ta  ->  ( ch  ->  th ) ) )
87a2d 24 . . . . . 6  |-  ( y  e.  om  ->  (
( ta  ->  ch )  ->  ( ta  ->  th ) ) )
9 vex 2895 . . . . . . 7  |-  y  e. 
_V
10 finds2.2 . . . . . . . 8  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
1110imbi2d 308 . . . . . . 7  |-  ( x  =  y  ->  (
( ta  ->  ph )  <->  ( ta  ->  ch )
) )
129, 11elab 3018 . . . . . 6  |-  ( y  e.  { x  |  ( ta  ->  ph ) } 
<->  ( ta  ->  ch ) )
139sucex 4724 . . . . . . 7  |-  suc  y  e.  _V
14 finds2.3 . . . . . . . 8  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
1514imbi2d 308 . . . . . . 7  |-  ( x  =  suc  y  -> 
( ( ta  ->  ph )  <->  ( ta  ->  th ) ) )
1613, 15elab 3018 . . . . . 6  |-  ( suc  y  e.  { x  |  ( ta  ->  ph ) }  <->  ( ta  ->  th ) )
178, 12, 163imtr4g 262 . . . . 5  |-  ( y  e.  om  ->  (
y  e.  { x  |  ( ta  ->  ph ) }  ->  suc  y  e.  { x  |  ( ta  ->  ph ) } ) )
1817rgen 2707 . . . 4  |-  A. y  e.  om  ( y  e. 
{ x  |  ( ta  ->  ph ) }  ->  suc  y  e.  { x  |  ( ta 
->  ph ) } )
19 peano5 4801 . . . 4  |-  ( (
(/)  e.  { x  |  ( ta  ->  ph ) }  /\  A. y  e.  om  (
y  e.  { x  |  ( ta  ->  ph ) }  ->  suc  y  e.  { x  |  ( ta  ->  ph ) } ) )  ->  om  C_  { x  |  ( ta  ->  ph ) } )
206, 18, 19mp2an 654 . . 3  |-  om  C_  { x  |  ( ta  ->  ph ) }
2120sseli 3280 . 2  |-  ( x  e.  om  ->  x  e.  { x  |  ( ta  ->  ph ) } )
22 abid 2368 . 2  |-  ( x  e.  { x  |  ( ta  ->  ph ) } 
<->  ( ta  ->  ph )
)
2321, 22sylib 189 1  |-  ( x  e.  om  ->  ( ta  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1649    e. wcel 1717   {cab 2366   A.wral 2642    C_ wss 3256   (/)c0 3564   suc csuc 4517   omcom 4778
This theorem is referenced by:  finds1  4807  onnseq  6535  nnacl  6783  nnmcl  6784  nnecl  6785  nnacom  6789  nnaass  6794  nndi  6795  nnmass  6796  nnmsucr  6797  nnmcom  6798  nnmordi  6803  omsmolem  6825  isinf  7251  unblem2  7289  fiint  7312  dffi3  7364  card2inf  7449  cantnfle  7552  cantnflt  7553  cantnflem1  7571  cnfcom  7583  trcl  7590  fseqenlem1  7831  infpssrlem3  8111  fin23lem26  8131  axdc3lem2  8257  axdc4lem  8261  axdclem2  8326  wunr1om  8520  wuncval2  8548  tskr1om  8568  grothomex  8630  peano5nni  9928  neibastop2lem  26073
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-br 4147  df-opab 4201  df-tr 4237  df-eprel 4428  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779
  Copyright terms: Public domain W3C validator