MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldiv2 Unicode version

Theorem fldiv2 11057
Description: Cancellation of an embedded floor of a ratio. Generalization of Equation 2.4 in [CormenLeisersonRivest] p. 33 (where  A must be an integer). (Contributed by NM, 9-Nov-2008.)
Assertion
Ref Expression
fldiv2  |-  ( ( A  e.  RR  /\  M  e.  NN  /\  N  e.  NN )  ->  ( |_ `  ( ( |_
`  ( A  /  M ) )  /  N ) )  =  ( |_ `  ( A  /  ( M  x.  N ) ) ) )

Proof of Theorem fldiv2
StepHypRef Expression
1 nndivre 9871 . . . 4  |-  ( ( A  e.  RR  /\  M  e.  NN )  ->  ( A  /  M
)  e.  RR )
2 fldiv 11056 . . . 4  |-  ( ( ( A  /  M
)  e.  RR  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  ( A  /  M ) )  /  N ) )  =  ( |_ `  ( ( A  /  M )  /  N
) ) )
31, 2sylan 457 . . 3  |-  ( ( ( A  e.  RR  /\  M  e.  NN )  /\  N  e.  NN )  ->  ( |_ `  ( ( |_ `  ( A  /  M
) )  /  N
) )  =  ( |_ `  ( ( A  /  M )  /  N ) ) )
433impa 1146 . 2  |-  ( ( A  e.  RR  /\  M  e.  NN  /\  N  e.  NN )  ->  ( |_ `  ( ( |_
`  ( A  /  M ) )  /  N ) )  =  ( |_ `  (
( A  /  M
)  /  N ) ) )
5 recn 8917 . . . 4  |-  ( A  e.  RR  ->  A  e.  CC )
6 nncn 9844 . . . . 5  |-  ( M  e.  NN  ->  M  e.  CC )
7 nnne0 9868 . . . . 5  |-  ( M  e.  NN  ->  M  =/=  0 )
86, 7jca 518 . . . 4  |-  ( M  e.  NN  ->  ( M  e.  CC  /\  M  =/=  0 ) )
9 nncn 9844 . . . . 5  |-  ( N  e.  NN  ->  N  e.  CC )
10 nnne0 9868 . . . . 5  |-  ( N  e.  NN  ->  N  =/=  0 )
119, 10jca 518 . . . 4  |-  ( N  e.  NN  ->  ( N  e.  CC  /\  N  =/=  0 ) )
12 divdiv1 9561 . . . 4  |-  ( ( A  e.  CC  /\  ( M  e.  CC  /\  M  =/=  0 )  /\  ( N  e.  CC  /\  N  =/=  0 ) )  -> 
( ( A  /  M )  /  N
)  =  ( A  /  ( M  x.  N ) ) )
135, 8, 11, 12syl3an 1224 . . 3  |-  ( ( A  e.  RR  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A  /  M
)  /  N )  =  ( A  / 
( M  x.  N
) ) )
1413fveq2d 5612 . 2  |-  ( ( A  e.  RR  /\  M  e.  NN  /\  N  e.  NN )  ->  ( |_ `  ( ( A  /  M )  /  N ) )  =  ( |_ `  ( A  /  ( M  x.  N ) ) ) )
154, 14eqtrd 2390 1  |-  ( ( A  e.  RR  /\  M  e.  NN  /\  N  e.  NN )  ->  ( |_ `  ( ( |_
`  ( A  /  M ) )  /  N ) )  =  ( |_ `  ( A  /  ( M  x.  N ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    =/= wne 2521   ` cfv 5337  (class class class)co 5945   CCcc 8825   RRcr 8826   0cc0 8827    x. cmul 8832    / cdiv 9513   NNcn 9836   |_cfl 11016
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904  ax-pre-sup 8905
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-riota 6391  df-recs 6475  df-rdg 6510  df-er 6747  df-en 6952  df-dom 6953  df-sdom 6954  df-sup 7284  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-div 9514  df-nn 9837  df-n0 10058  df-z 10117  df-uz 10323  df-fl 11017
  Copyright terms: Public domain W3C validator