MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimclsi Unicode version

Theorem flimclsi 17933
Description: The convergent points of a filter are a subset of the closure of any of the filter sets. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
flimclsi  |-  ( S  e.  F  ->  ( J  fLim  F )  C_  ( ( cls `  J
) `  S )
)

Proof of Theorem flimclsi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2389 . . . . . . . 8  |-  U. J  =  U. J
21flimfil 17924 . . . . . . 7  |-  ( x  e.  ( J  fLim  F )  ->  F  e.  ( Fil `  U. J
) )
32ad2antlr 708 . . . . . 6  |-  ( ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  /\  y  e.  ( ( nei `  J
) `  { x } ) )  ->  F  e.  ( Fil ` 
U. J ) )
4 flimnei 17922 . . . . . . 7  |-  ( ( x  e.  ( J 
fLim  F )  /\  y  e.  ( ( nei `  J
) `  { x } ) )  -> 
y  e.  F )
54adantll 695 . . . . . 6  |-  ( ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  /\  y  e.  ( ( nei `  J
) `  { x } ) )  -> 
y  e.  F )
6 simpll 731 . . . . . 6  |-  ( ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  /\  y  e.  ( ( nei `  J
) `  { x } ) )  ->  S  e.  F )
7 filinn0 17815 . . . . . 6  |-  ( ( F  e.  ( Fil `  U. J )  /\  y  e.  F  /\  S  e.  F )  ->  ( y  i^i  S
)  =/=  (/) )
83, 5, 6, 7syl3anc 1184 . . . . 5  |-  ( ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  /\  y  e.  ( ( nei `  J
) `  { x } ) )  -> 
( y  i^i  S
)  =/=  (/) )
98ralrimiva 2734 . . . 4  |-  ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  ->  A. y  e.  (
( nei `  J
) `  { x } ) ( y  i^i  S )  =/=  (/) )
10 flimtop 17920 . . . . . 6  |-  ( x  e.  ( J  fLim  F )  ->  J  e.  Top )
1110adantl 453 . . . . 5  |-  ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  ->  J  e.  Top )
12 filelss 17807 . . . . . . 7  |-  ( ( F  e.  ( Fil `  U. J )  /\  S  e.  F )  ->  S  C_  U. J )
1312ancoms 440 . . . . . 6  |-  ( ( S  e.  F  /\  F  e.  ( Fil ` 
U. J ) )  ->  S  C_  U. J
)
142, 13sylan2 461 . . . . 5  |-  ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  ->  S  C_  U. J )
151flimelbas 17923 . . . . . 6  |-  ( x  e.  ( J  fLim  F )  ->  x  e.  U. J )
1615adantl 453 . . . . 5  |-  ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  ->  x  e.  U. J )
171neindisj2 17112 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  U. J  /\  x  e.  U. J )  ->  ( x  e.  ( ( cls `  J
) `  S )  <->  A. y  e.  ( ( nei `  J ) `
 { x }
) ( y  i^i 
S )  =/=  (/) ) )
1811, 14, 16, 17syl3anc 1184 . . . 4  |-  ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  -> 
( x  e.  ( ( cls `  J
) `  S )  <->  A. y  e.  ( ( nei `  J ) `
 { x }
) ( y  i^i 
S )  =/=  (/) ) )
199, 18mpbird 224 . . 3  |-  ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  ->  x  e.  ( ( cls `  J ) `  S ) )
2019ex 424 . 2  |-  ( S  e.  F  ->  (
x  e.  ( J 
fLim  F )  ->  x  e.  ( ( cls `  J
) `  S )
) )
2120ssrdv 3299 1  |-  ( S  e.  F  ->  ( J  fLim  F )  C_  ( ( cls `  J
) `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1717    =/= wne 2552   A.wral 2651    i^i cin 3264    C_ wss 3265   (/)c0 3573   {csn 3759   U.cuni 3959   ` cfv 5396  (class class class)co 6022   Topctop 16883   clsccl 17007   neicnei 17086   Filcfil 17800    fLim cflim 17889
This theorem is referenced by:  flimcls  17940  flimfcls  17981  cnextcn  18021  cmetss  19140  minveclem4  19202
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-iin 4040  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-fbas 16625  df-top 16888  df-cld 17008  df-ntr 17009  df-cls 17010  df-nei 17087  df-fil 17801  df-flim 17894
  Copyright terms: Public domain W3C validator