MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnexALT Unicode version

Theorem fnexALT 5594
Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of funimaexg 5186. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.)
Assertion
Ref Expression
fnexALT  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  F  e.  _V )

Proof of Theorem fnexALT
StepHypRef Expression
1 fnrel 5199 . . . 4  |-  ( F  Fn  A  ->  Rel  F )
2 relssdmrn 5099 . . . 4  |-  ( Rel 
F  ->  F  C_  ( dom  F  X.  ran  F
) )
31, 2syl 17 . . 3  |-  ( F  Fn  A  ->  F  C_  ( dom  F  X.  ran  F ) )
43adantr 453 . 2  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  F  C_  ( dom  F  X.  ran  F ) )
5 fndm 5200 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
65eleq1d 2319 . . . 4  |-  ( F  Fn  A  ->  ( dom  F  e.  B  <->  A  e.  B ) )
76biimpar 473 . . 3  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  dom  F  e.  B
)
8 fnfun 5198 . . . . 5  |-  ( F  Fn  A  ->  Fun  F )
9 funimaexg 5186 . . . . 5  |-  ( ( Fun  F  /\  A  e.  B )  ->  ( F " A )  e. 
_V )
108, 9sylan 459 . . . 4  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  ( F " A
)  e.  _V )
11 imadmrn 4931 . . . . . . 7  |-  ( F
" dom  F )  =  ran  F
125imaeq2d 4919 . . . . . . 7  |-  ( F  Fn  A  ->  ( F " dom  F )  =  ( F " A ) )
1311, 12syl5eqr 2299 . . . . . 6  |-  ( F  Fn  A  ->  ran  F  =  ( F " A ) )
1413eleq1d 2319 . . . . 5  |-  ( F  Fn  A  ->  ( ran  F  e.  _V  <->  ( F " A )  e.  _V ) )
1514biimpar 473 . . . 4  |-  ( ( F  Fn  A  /\  ( F " A )  e.  _V )  ->  ran  F  e.  _V )
1610, 15syldan 458 . . 3  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  ran  F  e.  _V )
17 xpexg 4707 . . 3  |-  ( ( dom  F  e.  B  /\  ran  F  e.  _V )  ->  ( dom  F  X.  ran  F )  e. 
_V )
187, 16, 17syl2anc 645 . 2  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  ( dom  F  X.  ran  F )  e.  _V )
19 ssexg 4057 . 2  |-  ( ( F  C_  ( dom  F  X.  ran  F )  /\  ( dom  F  X.  ran  F )  e. 
_V )  ->  F  e.  _V )
204, 18, 19syl2anc 645 1  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    e. wcel 1621   _Vcvv 2727    C_ wss 3078    X. cxp 4578   dom cdm 4580   ran crn 4581   "cima 4583   Rel wrel 4585   Fun wfun 4586    Fn wfn 4587
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603
  Copyright terms: Public domain W3C validator