Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fninfp Structured version   Unicode version

Theorem fninfp 26737
Description: Express the class of fixed points of a function. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fninfp  |-  ( F  Fn  A  ->  dom  ( F  i^i  _I  )  =  { x  e.  A  |  ( F `  x )  =  x } )
Distinct variable groups:    x, F    x, A

Proof of Theorem fninfp
StepHypRef Expression
1 inres 5166 . . . . . 6  |-  (  _I 
i^i  ( F  |`  A ) )  =  ( (  _I  i^i  F )  |`  A )
2 incom 3535 . . . . . . 7  |-  (  _I 
i^i  F )  =  ( F  i^i  _I  )
32reseq1i 5144 . . . . . 6  |-  ( (  _I  i^i  F )  |`  A )  =  ( ( F  i^i  _I  )  |`  A )
41, 3eqtri 2458 . . . . 5  |-  (  _I 
i^i  ( F  |`  A ) )  =  ( ( F  i^i  _I  )  |`  A )
5 incom 3535 . . . . 5  |-  ( ( F  |`  A )  i^i  _I  )  =  (  _I  i^i  ( F  |`  A ) )
6 inres 5166 . . . . 5  |-  ( F  i^i  (  _I  |`  A ) )  =  ( ( F  i^i  _I  )  |`  A )
74, 5, 63eqtr4i 2468 . . . 4  |-  ( ( F  |`  A )  i^i  _I  )  =  ( F  i^i  (  _I  |`  A ) )
8 fnresdm 5556 . . . . 5  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
98ineq1d 3543 . . . 4  |-  ( F  Fn  A  ->  (
( F  |`  A )  i^i  _I  )  =  ( F  i^i  _I  ) )
107, 9syl5reqr 2485 . . 3  |-  ( F  Fn  A  ->  ( F  i^i  _I  )  =  ( F  i^i  (  _I  |`  A ) ) )
1110dmeqd 5074 . 2  |-  ( F  Fn  A  ->  dom  ( F  i^i  _I  )  =  dom  ( F  i^i  (  _I  |`  A ) ) )
12 fnresi 5564 . . 3  |-  (  _I  |`  A )  Fn  A
13 fndmin 5839 . . 3  |-  ( ( F  Fn  A  /\  (  _I  |`  A )  Fn  A )  ->  dom  ( F  i^i  (  _I  |`  A ) )  =  { x  e.  A  |  ( F `
 x )  =  ( (  _I  |`  A ) `
 x ) } )
1412, 13mpan2 654 . 2  |-  ( F  Fn  A  ->  dom  ( F  i^i  (  _I  |`  A ) )  =  { x  e.  A  |  ( F `
 x )  =  ( (  _I  |`  A ) `
 x ) } )
15 fvresi 5926 . . . . 5  |-  ( x  e.  A  ->  (
(  _I  |`  A ) `
 x )  =  x )
1615eqeq2d 2449 . . . 4  |-  ( x  e.  A  ->  (
( F `  x
)  =  ( (  _I  |`  A ) `  x )  <->  ( F `  x )  =  x ) )
1716rabbiia 2948 . . 3  |-  { x  e.  A  |  ( F `  x )  =  ( (  _I  |`  A ) `  x
) }  =  {
x  e.  A  | 
( F `  x
)  =  x }
1817a1i 11 . 2  |-  ( F  Fn  A  ->  { x  e.  A  |  ( F `  x )  =  ( (  _I  |`  A ) `  x
) }  =  {
x  e.  A  | 
( F `  x
)  =  x }
)
1911, 14, 183eqtrd 2474 1  |-  ( F  Fn  A  ->  dom  ( F  i^i  _I  )  =  { x  e.  A  |  ( F `  x )  =  x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1726   {crab 2711    i^i cin 3321    _I cid 4495   dom cdm 4880    |` cres 4882    Fn wfn 5451   ` cfv 5456
This theorem is referenced by:  fnelfp  26738
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-res 4892  df-iota 5420  df-fun 5458  df-fn 5459  df-fv 5464
  Copyright terms: Public domain W3C validator