MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fniunfv Unicode version

Theorem fniunfv 5953
Description: The indexed union of a function's values is the union of its range. Compare Definition 5.4 of [Monk1] p. 50. (Contributed by NM, 27-Sep-2004.)
Assertion
Ref Expression
fniunfv  |-  ( F  Fn  A  ->  U_ x  e.  A  ( F `  x )  =  U. ran  F )
Distinct variable groups:    x, A    x, F

Proof of Theorem fniunfv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fnrnfv 5732 . . 3  |-  ( F  Fn  A  ->  ran  F  =  { y  |  E. x  e.  A  y  =  ( F `  x ) } )
21unieqd 3986 . 2  |-  ( F  Fn  A  ->  U. ran  F  =  U. { y  |  E. x  e.  A  y  =  ( F `  x ) } )
3 fvex 5701 . . 3  |-  ( F `
 x )  e. 
_V
43dfiun2 4085 . 2  |-  U_ x  e.  A  ( F `  x )  =  U. { y  |  E. x  e.  A  y  =  ( F `  x ) }
52, 4syl6reqr 2455 1  |-  ( F  Fn  A  ->  U_ x  e.  A  ( F `  x )  =  U. ran  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649   {cab 2390   E.wrex 2667   U.cuni 3975   U_ciun 4053   ran crn 4838    Fn wfn 5408   ` cfv 5413
This theorem is referenced by:  funiunfv  5954  dffi3  7394  jech9.3  7696  hsmexlem5  8266  wuncval2  8578  dprdspan  15540  tgcmp  17418  txcmplem1  17626  txcmplem2  17627  xkococnlem  17644  alexsubALT  18035  bcth3  19237  ovolfioo  19317  ovolficc  19318  voliunlem2  19398  voliunlem3  19399  volsup  19403  uniiccdif  19423  uniioovol  19424  uniiccvol  19425  uniioombllem2  19428  uniioombllem4  19431  volsup2  19450  itg1climres  19559  itg2monolem1  19595  itg2gt0  19605  dftrpred2  25436  volsupnfl  26150  hbt  27202
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-iota 5377  df-fun 5415  df-fn 5416  df-fv 5421
  Copyright terms: Public domain W3C validator