MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnopfv Unicode version

Theorem fnopfv 5621
Description: Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by NM, 30-Sep-2004.)
Assertion
Ref Expression
fnopfv  |-  ( ( F  Fn  A  /\  B  e.  A )  -> 
<. B ,  ( F `
 B ) >.  e.  F )

Proof of Theorem fnopfv
StepHypRef Expression
1 funfvop 5598 . 2  |-  ( ( Fun  F  /\  B  e.  dom  F )  ->  <. B ,  ( F `
 B ) >.  e.  F )
21funfni 5309 1  |-  ( ( F  Fn  A  /\  B  e.  A )  -> 
<. B ,  ( F `
 B ) >.  e.  F )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    e. wcel 1685   <.cop 3644    Fn wfn 5216   ` cfv 5221
This theorem is referenced by:  foeqcnvco  5765
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-fv 5229
  Copyright terms: Public domain W3C validator