MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnssresb Unicode version

Theorem fnssresb 5358
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 10-Oct-2007.)
Assertion
Ref Expression
fnssresb  |-  ( F  Fn  A  ->  (
( F  |`  B )  Fn  B  <->  B  C_  A
) )

Proof of Theorem fnssresb
StepHypRef Expression
1 df-fn 5260 . 2  |-  ( ( F  |`  B )  Fn  B  <->  ( Fun  ( F  |`  B )  /\  dom  ( F  |`  B )  =  B ) )
2 fnfun 5343 . . . . 5  |-  ( F  Fn  A  ->  Fun  F )
3 funres 5295 . . . . 5  |-  ( Fun 
F  ->  Fun  ( F  |`  B ) )
42, 3syl 15 . . . 4  |-  ( F  Fn  A  ->  Fun  ( F  |`  B ) )
54biantrurd 494 . . 3  |-  ( F  Fn  A  ->  ( dom  ( F  |`  B )  =  B  <->  ( Fun  ( F  |`  B )  /\  dom  ( F  |`  B )  =  B ) ) )
6 ssdmres 4979 . . . 4  |-  ( B 
C_  dom  F  <->  dom  ( F  |`  B )  =  B )
7 fndm 5345 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
87sseq2d 3208 . . . 4  |-  ( F  Fn  A  ->  ( B  C_  dom  F  <->  B  C_  A
) )
96, 8syl5bbr 250 . . 3  |-  ( F  Fn  A  ->  ( dom  ( F  |`  B )  =  B  <->  B  C_  A
) )
105, 9bitr3d 246 . 2  |-  ( F  Fn  A  ->  (
( Fun  ( F  |`  B )  /\  dom  ( F  |`  B )  =  B )  <->  B  C_  A
) )
111, 10syl5bb 248 1  |-  ( F  Fn  A  ->  (
( F  |`  B )  Fn  B  <->  B  C_  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1625    C_ wss 3154   dom cdm 4691    |` cres 4693   Fun wfun 5251    Fn wfn 5252
This theorem is referenced by:  fnssres  5359  plyreres  19665  xrge0pluscn  23324  prl2  25180  fnbrafvb  28027
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pr 4216
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-op 3651  df-br 4026  df-opab 4080  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-res 4703  df-fun 5259  df-fn 5260
  Copyright terms: Public domain W3C validator