MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnssresb Unicode version

Theorem fnssresb 5497
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 10-Oct-2007.)
Assertion
Ref Expression
fnssresb  |-  ( F  Fn  A  ->  (
( F  |`  B )  Fn  B  <->  B  C_  A
) )

Proof of Theorem fnssresb
StepHypRef Expression
1 df-fn 5397 . 2  |-  ( ( F  |`  B )  Fn  B  <->  ( Fun  ( F  |`  B )  /\  dom  ( F  |`  B )  =  B ) )
2 fnfun 5482 . . . . 5  |-  ( F  Fn  A  ->  Fun  F )
3 funres 5432 . . . . 5  |-  ( Fun 
F  ->  Fun  ( F  |`  B ) )
42, 3syl 16 . . . 4  |-  ( F  Fn  A  ->  Fun  ( F  |`  B ) )
54biantrurd 495 . . 3  |-  ( F  Fn  A  ->  ( dom  ( F  |`  B )  =  B  <->  ( Fun  ( F  |`  B )  /\  dom  ( F  |`  B )  =  B ) ) )
6 ssdmres 5108 . . . 4  |-  ( B 
C_  dom  F  <->  dom  ( F  |`  B )  =  B )
7 fndm 5484 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
87sseq2d 3319 . . . 4  |-  ( F  Fn  A  ->  ( B  C_  dom  F  <->  B  C_  A
) )
96, 8syl5bbr 251 . . 3  |-  ( F  Fn  A  ->  ( dom  ( F  |`  B )  =  B  <->  B  C_  A
) )
105, 9bitr3d 247 . 2  |-  ( F  Fn  A  ->  (
( Fun  ( F  |`  B )  /\  dom  ( F  |`  B )  =  B )  <->  B  C_  A
) )
111, 10syl5bb 249 1  |-  ( F  Fn  A  ->  (
( F  |`  B )  Fn  B  <->  B  C_  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    C_ wss 3263   dom cdm 4818    |` cres 4820   Fun wfun 5388    Fn wfn 5389
This theorem is referenced by:  fnssres  5498  plyreres  20067  redwlklem  21453  xrge0pluscn  24130  fnbrafvb  27687
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-br 4154  df-opab 4208  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-res 4830  df-fun 5396  df-fn 5397
  Copyright terms: Public domain W3C validator