MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomb Unicode version

Theorem fodomb 8337
Description: Equivalence of an onto mapping and dominance for a non-empty set. Proposition 10.35 of [TakeutiZaring] p. 93. (Contributed by NM, 29-Jul-2004.)
Assertion
Ref Expression
fodomb  |-  ( ( A  =/=  (/)  /\  E. f  f : A -onto-> B )  <->  ( (/)  ~<  B  /\  B  ~<_  A ) )
Distinct variable groups:    A, f    B, f

Proof of Theorem fodomb
StepHypRef Expression
1 fof 5593 . . . . . . . . . . . 12  |-  ( f : A -onto-> B  -> 
f : A --> B )
2 fdm 5535 . . . . . . . . . . . 12  |-  ( f : A --> B  ->  dom  f  =  A
)
31, 2syl 16 . . . . . . . . . . 11  |-  ( f : A -onto-> B  ->  dom  f  =  A
)
43eqeq1d 2395 . . . . . . . . . 10  |-  ( f : A -onto-> B  -> 
( dom  f  =  (/)  <->  A  =  (/) ) )
5 dm0rn0 5026 . . . . . . . . . . 11  |-  ( dom  f  =  (/)  <->  ran  f  =  (/) )
6 forn 5596 . . . . . . . . . . . 12  |-  ( f : A -onto-> B  ->  ran  f  =  B
)
76eqeq1d 2395 . . . . . . . . . . 11  |-  ( f : A -onto-> B  -> 
( ran  f  =  (/)  <->  B  =  (/) ) )
85, 7syl5bb 249 . . . . . . . . . 10  |-  ( f : A -onto-> B  -> 
( dom  f  =  (/)  <->  B  =  (/) ) )
94, 8bitr3d 247 . . . . . . . . 9  |-  ( f : A -onto-> B  -> 
( A  =  (/)  <->  B  =  (/) ) )
109necon3bid 2585 . . . . . . . 8  |-  ( f : A -onto-> B  -> 
( A  =/=  (/)  <->  B  =/=  (/) ) )
1110biimpac 473 . . . . . . 7  |-  ( ( A  =/=  (/)  /\  f : A -onto-> B )  ->  B  =/=  (/) )
12 vex 2902 . . . . . . . . . . . 12  |-  f  e. 
_V
1312dmex 5072 . . . . . . . . . . 11  |-  dom  f  e.  _V
143, 13syl6eqelr 2476 . . . . . . . . . 10  |-  ( f : A -onto-> B  ->  A  e.  _V )
15 fornex 5909 . . . . . . . . . 10  |-  ( A  e.  _V  ->  (
f : A -onto-> B  ->  B  e.  _V )
)
1614, 15mpcom 34 . . . . . . . . 9  |-  ( f : A -onto-> B  ->  B  e.  _V )
17 0sdomg 7172 . . . . . . . . 9  |-  ( B  e.  _V  ->  ( (/) 
~<  B  <->  B  =/=  (/) ) )
1816, 17syl 16 . . . . . . . 8  |-  ( f : A -onto-> B  -> 
( (/)  ~<  B  <->  B  =/=  (/) ) )
1918adantl 453 . . . . . . 7  |-  ( ( A  =/=  (/)  /\  f : A -onto-> B )  ->  ( (/) 
~<  B  <->  B  =/=  (/) ) )
2011, 19mpbird 224 . . . . . 6  |-  ( ( A  =/=  (/)  /\  f : A -onto-> B )  ->  (/)  ~<  B )
2120ex 424 . . . . 5  |-  ( A  =/=  (/)  ->  ( f : A -onto-> B  ->  (/)  ~<  B ) )
22 fodomg 8336 . . . . . . 7  |-  ( A  e.  _V  ->  (
f : A -onto-> B  ->  B  ~<_  A ) )
2314, 22mpcom 34 . . . . . 6  |-  ( f : A -onto-> B  ->  B  ~<_  A )
2423a1i 11 . . . . 5  |-  ( A  =/=  (/)  ->  ( f : A -onto-> B  ->  B  ~<_  A ) )
2521, 24jcad 520 . . . 4  |-  ( A  =/=  (/)  ->  ( f : A -onto-> B  ->  ( (/)  ~<  B  /\  B  ~<_  A ) ) )
2625exlimdv 1643 . . 3  |-  ( A  =/=  (/)  ->  ( E. f  f : A -onto-> B  ->  ( (/)  ~<  B  /\  B  ~<_  A ) ) )
2726imp 419 . 2  |-  ( ( A  =/=  (/)  /\  E. f  f : A -onto-> B )  ->  ( (/) 
~<  B  /\  B  ~<_  A ) )
28 sdomdomtr 7176 . . . 4  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  (/)  ~<  A )
29 reldom 7051 . . . . . . 7  |-  Rel  ~<_
3029brrelex2i 4859 . . . . . 6  |-  ( B  ~<_  A  ->  A  e.  _V )
3130adantl 453 . . . . 5  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  A  e.  _V )
32 0sdomg 7172 . . . . 5  |-  ( A  e.  _V  ->  ( (/) 
~<  A  <->  A  =/=  (/) ) )
3331, 32syl 16 . . . 4  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  ( (/) 
~<  A  <->  A  =/=  (/) ) )
3428, 33mpbid 202 . . 3  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  A  =/=  (/) )
35 fodomr 7194 . . 3  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  E. f 
f : A -onto-> B
)
3634, 35jca 519 . 2  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  ( A  =/=  (/)  /\  E. f 
f : A -onto-> B
) )
3727, 36impbii 181 1  |-  ( ( A  =/=  (/)  /\  E. f  f : A -onto-> B )  <->  ( (/)  ~<  B  /\  B  ~<_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717    =/= wne 2550   _Vcvv 2899   (/)c0 3571   class class class wbr 4153   dom cdm 4818   ran crn 4819   -->wf 5390   -onto->wfo 5392    ~<_ cdom 7043    ~< csdm 7044
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-ac2 8276
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-suc 4528  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-er 6841  df-map 6956  df-en 7046  df-dom 7047  df-sdom 7048  df-card 7759  df-acn 7762  df-ac 7930
  Copyright terms: Public domain W3C validator