MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomb Unicode version

Theorem fodomb 8035
Description: Equivalence of an onto mapping and dominance for a non-empty set. Proposition 10.35 of [TakeutiZaring] p. 93. (Contributed by NM, 29-Jul-2004.)
Assertion
Ref Expression
fodomb  |-  ( ( A  =/=  (/)  /\  E. f  f : A -onto-> B )  <->  ( (/)  ~<  B  /\  B  ~<_  A ) )
Distinct variable groups:    A, f    B, f

Proof of Theorem fodomb
StepHypRef Expression
1 fof 5308 . . . . . . . . . . . 12  |-  ( f : A -onto-> B  -> 
f : A --> B )
2 fdm 5250 . . . . . . . . . . . 12  |-  ( f : A --> B  ->  dom  f  =  A
)
31, 2syl 17 . . . . . . . . . . 11  |-  ( f : A -onto-> B  ->  dom  f  =  A
)
43eqeq1d 2261 . . . . . . . . . 10  |-  ( f : A -onto-> B  -> 
( dom  f  =  (/)  <->  A  =  (/) ) )
5 dm0rn0 4802 . . . . . . . . . . 11  |-  ( dom  f  =  (/)  <->  ran  f  =  (/) )
6 forn 5311 . . . . . . . . . . . 12  |-  ( f : A -onto-> B  ->  ran  f  =  B
)
76eqeq1d 2261 . . . . . . . . . . 11  |-  ( f : A -onto-> B  -> 
( ran  f  =  (/)  <->  B  =  (/) ) )
85, 7syl5bb 250 . . . . . . . . . 10  |-  ( f : A -onto-> B  -> 
( dom  f  =  (/)  <->  B  =  (/) ) )
94, 8bitr3d 248 . . . . . . . . 9  |-  ( f : A -onto-> B  -> 
( A  =  (/)  <->  B  =  (/) ) )
109necon3bid 2447 . . . . . . . 8  |-  ( f : A -onto-> B  -> 
( A  =/=  (/)  <->  B  =/=  (/) ) )
1110biimpac 474 . . . . . . 7  |-  ( ( A  =/=  (/)  /\  f : A -onto-> B )  ->  B  =/=  (/) )
12 vex 2730 . . . . . . . . . . . 12  |-  f  e. 
_V
1312dmex 4848 . . . . . . . . . . 11  |-  dom  f  e.  _V
143, 13syl6eqelr 2342 . . . . . . . . . 10  |-  ( f : A -onto-> B  ->  A  e.  _V )
15 fornex 5602 . . . . . . . . . 10  |-  ( A  e.  _V  ->  (
f : A -onto-> B  ->  B  e.  _V )
)
1614, 15mpcom 34 . . . . . . . . 9  |-  ( f : A -onto-> B  ->  B  e.  _V )
17 0sdomg 6875 . . . . . . . . 9  |-  ( B  e.  _V  ->  ( (/) 
~<  B  <->  B  =/=  (/) ) )
1816, 17syl 17 . . . . . . . 8  |-  ( f : A -onto-> B  -> 
( (/)  ~<  B  <->  B  =/=  (/) ) )
1918adantl 454 . . . . . . 7  |-  ( ( A  =/=  (/)  /\  f : A -onto-> B )  ->  ( (/) 
~<  B  <->  B  =/=  (/) ) )
2011, 19mpbird 225 . . . . . 6  |-  ( ( A  =/=  (/)  /\  f : A -onto-> B )  ->  (/)  ~<  B )
2120ex 425 . . . . 5  |-  ( A  =/=  (/)  ->  ( f : A -onto-> B  ->  (/)  ~<  B ) )
22 fodomg 8034 . . . . . . 7  |-  ( A  e.  _V  ->  (
f : A -onto-> B  ->  B  ~<_  A ) )
2314, 22mpcom 34 . . . . . 6  |-  ( f : A -onto-> B  ->  B  ~<_  A )
2423a1i 12 . . . . 5  |-  ( A  =/=  (/)  ->  ( f : A -onto-> B  ->  B  ~<_  A ) )
2521, 24jcad 521 . . . 4  |-  ( A  =/=  (/)  ->  ( f : A -onto-> B  ->  ( (/)  ~<  B  /\  B  ~<_  A ) ) )
2625exlimdv 1932 . . 3  |-  ( A  =/=  (/)  ->  ( E. f  f : A -onto-> B  ->  ( (/)  ~<  B  /\  B  ~<_  A ) ) )
2726imp 420 . 2  |-  ( ( A  =/=  (/)  /\  E. f  f : A -onto-> B )  ->  ( (/) 
~<  B  /\  B  ~<_  A ) )
28 sdomdomtr 6879 . . . 4  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  (/)  ~<  A )
29 reldom 6755 . . . . . . 7  |-  Rel  ~<_
3029brrelex2i 4637 . . . . . 6  |-  ( B  ~<_  A  ->  A  e.  _V )
3130adantl 454 . . . . 5  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  A  e.  _V )
32 0sdomg 6875 . . . . 5  |-  ( A  e.  _V  ->  ( (/) 
~<  A  <->  A  =/=  (/) ) )
3331, 32syl 17 . . . 4  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  ( (/) 
~<  A  <->  A  =/=  (/) ) )
3428, 33mpbid 203 . . 3  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  A  =/=  (/) )
35 fodomr 6897 . . 3  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  E. f 
f : A -onto-> B
)
3634, 35jca 520 . 2  |-  ( (
(/)  ~<  B  /\  B  ~<_  A )  ->  ( A  =/=  (/)  /\  E. f 
f : A -onto-> B
) )
3727, 36impbii 182 1  |-  ( ( A  =/=  (/)  /\  E. f  f : A -onto-> B )  <->  ( (/)  ~<  B  /\  B  ~<_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621    =/= wne 2412   _Vcvv 2727   (/)c0 3362   class class class wbr 3920   dom cdm 4580   ran crn 4581   -->wf 4588   -onto->wfo 4590    ~<_ cdom 6747    ~< csdm 6748
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-ac2 7973
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-suc 4291  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-card 7456  df-acn 7459  df-ac 7627
  Copyright terms: Public domain W3C validator