Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fphpd Unicode version

Theorem fphpd 26298
Description: Pigeonhole principle expressed with implicit substitution. If the range is smaller than the domain, two inputs must be mapped to the same output. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
fphpd.a  |-  ( ph  ->  B  ~<  A )
fphpd.b  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
fphpd.c  |-  ( x  =  y  ->  C  =  D )
Assertion
Ref Expression
fphpd  |-  ( ph  ->  E. x  e.  A  E. y  e.  A  ( x  =/=  y  /\  C  =  D
) )
Distinct variable groups:    x, A, y    x, B, y    y, C    x, D    ph, x, y
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
Allowed substitution hints:    C( x)    D( y)

Proof of Theorem fphpd
StepHypRef Expression
1 domnsym 6982 . . . 4  |-  ( A  ~<_  B  ->  -.  B  ~<  A )
2 fphpd.a . . . 4  |-  ( ph  ->  B  ~<  A )
31, 2nsyl3 113 . . 3  |-  ( ph  ->  -.  A  ~<_  B )
4 relsdom 6865 . . . . . . 7  |-  Rel  ~<
54brrelexi 4728 . . . . . 6  |-  ( B 
~<  A  ->  B  e. 
_V )
62, 5syl 17 . . . . 5  |-  ( ph  ->  B  e.  _V )
76adantr 453 . . . 4  |-  ( (
ph  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )  ->  B  e.  _V )
8 nfv 1606 . . . . . . . . 9  |-  F/ x
( ph  /\  a  e.  A )
9 nfcsb1v 3114 . . . . . . . . . 10  |-  F/_ x [_ a  /  x ]_ C
109nfel1 2430 . . . . . . . . 9  |-  F/ x [_ a  /  x ]_ C  e.  B
118, 10nfim 1770 . . . . . . . 8  |-  F/ x
( ( ph  /\  a  e.  A )  ->  [_ a  /  x ]_ C  e.  B
)
12 eleq1 2344 . . . . . . . . . 10  |-  ( x  =  a  ->  (
x  e.  A  <->  a  e.  A ) )
1312anbi2d 686 . . . . . . . . 9  |-  ( x  =  a  ->  (
( ph  /\  x  e.  A )  <->  ( ph  /\  a  e.  A ) ) )
14 csbeq1a 3090 . . . . . . . . . 10  |-  ( x  =  a  ->  C  =  [_ a  /  x ]_ C )
1514eleq1d 2350 . . . . . . . . 9  |-  ( x  =  a  ->  ( C  e.  B  <->  [_ a  /  x ]_ C  e.  B
) )
1613, 15imbi12d 313 . . . . . . . 8  |-  ( x  =  a  ->  (
( ( ph  /\  x  e.  A )  ->  C  e.  B )  <-> 
( ( ph  /\  a  e.  A )  ->  [_ a  /  x ]_ C  e.  B
) ) )
17 fphpd.b . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
1811, 16, 17chvar 1928 . . . . . . 7  |-  ( (
ph  /\  a  e.  A )  ->  [_ a  /  x ]_ C  e.  B )
1918ex 425 . . . . . 6  |-  ( ph  ->  ( a  e.  A  ->  [_ a  /  x ]_ C  e.  B
) )
2019adantr 453 . . . . 5  |-  ( (
ph  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )  -> 
( a  e.  A  ->  [_ a  /  x ]_ C  e.  B
) )
21 csbid 3089 . . . . . . . . . . 11  |-  [_ x  /  x ]_ C  =  C
22 vex 2792 . . . . . . . . . . . 12  |-  y  e. 
_V
23 nfcv 2420 . . . . . . . . . . . 12  |-  F/_ x D
24 fphpd.c . . . . . . . . . . . 12  |-  ( x  =  y  ->  C  =  D )
2522, 23, 24csbief 3123 . . . . . . . . . . 11  |-  [_ y  /  x ]_ C  =  D
2621, 25eqeq12i 2297 . . . . . . . . . 10  |-  ( [_ x  /  x ]_ C  =  [_ y  /  x ]_ C  <->  C  =  D
)
2726imbi1i 317 . . . . . . . . 9  |-  ( (
[_ x  /  x ]_ C  =  [_ y  /  x ]_ C  ->  x  =  y )  <->  ( C  =  D  ->  x  =  y )
)
28272ralbii 2570 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  A  ( [_ x  /  x ]_ C  =  [_ y  /  x ]_ C  ->  x  =  y )  <->  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )
29 nfcsb1v 3114 . . . . . . . . . . . 12  |-  F/_ x [_ y  /  x ]_ C
309, 29nfeq 2427 . . . . . . . . . . 11  |-  F/ x [_ a  /  x ]_ C  =  [_ y  /  x ]_ C
31 nfv 1606 . . . . . . . . . . 11  |-  F/ x  a  =  y
3230, 31nfim 1770 . . . . . . . . . 10  |-  F/ x
( [_ a  /  x ]_ C  =  [_ y  /  x ]_ C  -> 
a  =  y )
33 nfv 1606 . . . . . . . . . 10  |-  F/ y ( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  ->  a  =  b )
34 csbeq1 3085 . . . . . . . . . . . 12  |-  ( x  =  a  ->  [_ x  /  x ]_ C  = 
[_ a  /  x ]_ C )
3534eqeq1d 2292 . . . . . . . . . . 11  |-  ( x  =  a  ->  ( [_ x  /  x ]_ C  =  [_ y  /  x ]_ C  <->  [_ a  /  x ]_ C  =  [_ y  /  x ]_ C
) )
36 equequ1 1649 . . . . . . . . . . 11  |-  ( x  =  a  ->  (
x  =  y  <->  a  =  y ) )
3735, 36imbi12d 313 . . . . . . . . . 10  |-  ( x  =  a  ->  (
( [_ x  /  x ]_ C  =  [_ y  /  x ]_ C  ->  x  =  y )  <->  (
[_ a  /  x ]_ C  =  [_ y  /  x ]_ C  -> 
a  =  y ) ) )
38 csbeq1 3085 . . . . . . . . . . . 12  |-  ( y  =  b  ->  [_ y  /  x ]_ C  = 
[_ b  /  x ]_ C )
3938eqeq2d 2295 . . . . . . . . . . 11  |-  ( y  =  b  ->  ( [_ a  /  x ]_ C  =  [_ y  /  x ]_ C  <->  [_ a  /  x ]_ C  =  [_ b  /  x ]_ C
) )
40 equequ2 1650 . . . . . . . . . . 11  |-  ( y  =  b  ->  (
a  =  y  <->  a  =  b ) )
4139, 40imbi12d 313 . . . . . . . . . 10  |-  ( y  =  b  ->  (
( [_ a  /  x ]_ C  =  [_ y  /  x ]_ C  -> 
a  =  y )  <-> 
( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  -> 
a  =  b ) ) )
4232, 33, 37, 41rspc2 2890 . . . . . . . . 9  |-  ( ( a  e.  A  /\  b  e.  A )  ->  ( A. x  e.  A  A. y  e.  A  ( [_ x  /  x ]_ C  = 
[_ y  /  x ]_ C  ->  x  =  y )  ->  ( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  -> 
a  =  b ) ) )
4342com12 29 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  A  ( [_ x  /  x ]_ C  =  [_ y  /  x ]_ C  ->  x  =  y )  ->  ( ( a  e.  A  /\  b  e.  A )  ->  ( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  -> 
a  =  b ) ) )
4428, 43sylbir 206 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y )  -> 
( ( a  e.  A  /\  b  e.  A )  ->  ( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  -> 
a  =  b ) ) )
45 id 21 . . . . . . . 8  |-  ( (
[_ a  /  x ]_ C  =  [_ b  /  x ]_ C  -> 
a  =  b )  ->  ( [_ a  /  x ]_ C  = 
[_ b  /  x ]_ C  ->  a  =  b ) )
46 csbeq1 3085 . . . . . . . 8  |-  ( a  =  b  ->  [_ a  /  x ]_ C  = 
[_ b  /  x ]_ C )
4745, 46impbid1 196 . . . . . . 7  |-  ( (
[_ a  /  x ]_ C  =  [_ b  /  x ]_ C  -> 
a  =  b )  ->  ( [_ a  /  x ]_ C  = 
[_ b  /  x ]_ C  <->  a  =  b ) )
4844, 47syl6 31 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y )  -> 
( ( a  e.  A  /\  b  e.  A )  ->  ( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  <->  a  =  b ) ) )
4948adantl 454 . . . . 5  |-  ( (
ph  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )  -> 
( ( a  e.  A  /\  b  e.  A )  ->  ( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  <->  a  =  b ) ) )
5020, 49dom2d 6897 . . . 4  |-  ( (
ph  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )  -> 
( B  e.  _V  ->  A  ~<_  B ) )
517, 50mpd 16 . . 3  |-  ( (
ph  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )  ->  A  ~<_  B )
523, 51mtand 642 . 2  |-  ( ph  ->  -.  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )
53 ancom 439 . . . . . . 7  |-  ( ( -.  x  =  y  /\  C  =  D )  <->  ( C  =  D  /\  -.  x  =  y ) )
54 df-ne 2449 . . . . . . . 8  |-  ( x  =/=  y  <->  -.  x  =  y )
5554anbi1i 678 . . . . . . 7  |-  ( ( x  =/=  y  /\  C  =  D )  <->  ( -.  x  =  y  /\  C  =  D ) )
56 pm4.61 417 . . . . . . 7  |-  ( -.  ( C  =  D  ->  x  =  y )  <->  ( C  =  D  /\  -.  x  =  y ) )
5753, 55, 563bitr4i 270 . . . . . 6  |-  ( ( x  =/=  y  /\  C  =  D )  <->  -.  ( C  =  D  ->  x  =  y ) )
5857rexbii 2569 . . . . 5  |-  ( E. y  e.  A  ( x  =/=  y  /\  C  =  D )  <->  E. y  e.  A  -.  ( C  =  D  ->  x  =  y ) )
59 rexnal 2555 . . . . 5  |-  ( E. y  e.  A  -.  ( C  =  D  ->  x  =  y )  <->  -.  A. y  e.  A  ( C  =  D  ->  x  =  y ) )
6058, 59bitri 242 . . . 4  |-  ( E. y  e.  A  ( x  =/=  y  /\  C  =  D )  <->  -. 
A. y  e.  A  ( C  =  D  ->  x  =  y ) )
6160rexbii 2569 . . 3  |-  ( E. x  e.  A  E. y  e.  A  (
x  =/=  y  /\  C  =  D )  <->  E. x  e.  A  -.  A. y  e.  A  ( C  =  D  ->  x  =  y )
)
62 rexnal 2555 . . 3  |-  ( E. x  e.  A  -.  A. y  e.  A  ( C  =  D  ->  x  =  y )  <->  -. 
A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )
6361, 62bitri 242 . 2  |-  ( E. x  e.  A  E. y  e.  A  (
x  =/=  y  /\  C  =  D )  <->  -. 
A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )
6452, 63sylibr 205 1  |-  ( ph  ->  E. x  e.  A  E. y  e.  A  ( x  =/=  y  /\  C  =  D
) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1624    e. wcel 1685    =/= wne 2447   A.wral 2544   E.wrex 2545   _Vcvv 2789   [_csb 3082   class class class wbr 4024    ~<_ cdom 6856    ~< csdm 6857
This theorem is referenced by:  fphpdo  26299  pellex  26319
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861
  Copyright terms: Public domain W3C validator