MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpr Structured version   Unicode version

Theorem fpr 5914
Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
fpr.1  |-  A  e. 
_V
fpr.2  |-  B  e. 
_V
fpr.3  |-  C  e. 
_V
fpr.4  |-  D  e. 
_V
Assertion
Ref Expression
fpr  |-  ( A  =/=  B  ->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } --> { C ,  D }
)

Proof of Theorem fpr
StepHypRef Expression
1 fpr.1 . . . . . 6  |-  A  e. 
_V
2 fpr.2 . . . . . 6  |-  B  e. 
_V
3 fpr.3 . . . . . 6  |-  C  e. 
_V
4 fpr.4 . . . . . 6  |-  D  e. 
_V
51, 2, 3, 4funpr 5502 . . . . 5  |-  ( A  =/=  B  ->  Fun  {
<. A ,  C >. , 
<. B ,  D >. } )
63, 4dmprop 5345 . . . . 5  |-  dom  { <. A ,  C >. , 
<. B ,  D >. }  =  { A ,  B }
75, 6jctir 525 . . . 4  |-  ( A  =/=  B  ->  ( Fun  { <. A ,  C >. ,  <. B ,  D >. }  /\  dom  { <. A ,  C >. , 
<. B ,  D >. }  =  { A ,  B } ) )
8 df-fn 5457 . . . 4  |-  ( {
<. A ,  C >. , 
<. B ,  D >. }  Fn  { A ,  B }  <->  ( Fun  { <. A ,  C >. , 
<. B ,  D >. }  /\  dom  { <. A ,  C >. ,  <. B ,  D >. }  =  { A ,  B }
) )
97, 8sylibr 204 . . 3  |-  ( A  =/=  B  ->  { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B }
)
10 df-pr 3821 . . . . . 6  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )
1110rneqi 5096 . . . . 5  |-  ran  { <. A ,  C >. , 
<. B ,  D >. }  =  ran  ( {
<. A ,  C >. }  u.  { <. B ,  D >. } )
12 rnun 5280 . . . . 5  |-  ran  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )  =  ( ran  { <. A ,  C >. }  u.  ran  { <. B ,  D >. } )
131rnsnop 5350 . . . . . . 7  |-  ran  { <. A ,  C >. }  =  { C }
142rnsnop 5350 . . . . . . 7  |-  ran  { <. B ,  D >. }  =  { D }
1513, 14uneq12i 3499 . . . . . 6  |-  ( ran 
{ <. A ,  C >. }  u.  ran  { <. B ,  D >. } )  =  ( { C }  u.  { D } )
16 df-pr 3821 . . . . . 6  |-  { C ,  D }  =  ( { C }  u.  { D } )
1715, 16eqtr4i 2459 . . . . 5  |-  ( ran 
{ <. A ,  C >. }  u.  ran  { <. B ,  D >. } )  =  { C ,  D }
1811, 12, 173eqtri 2460 . . . 4  |-  ran  { <. A ,  C >. , 
<. B ,  D >. }  =  { C ,  D }
1918eqimssi 3402 . . 3  |-  ran  { <. A ,  C >. , 
<. B ,  D >. } 
C_  { C ,  D }
209, 19jctir 525 . 2  |-  ( A  =/=  B  ->  ( { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B }  /\  ran  {
<. A ,  C >. , 
<. B ,  D >. } 
C_  { C ,  D } ) )
21 df-f 5458 . 2  |-  ( {
<. A ,  C >. , 
<. B ,  D >. } : { A ,  B } --> { C ,  D }  <->  ( { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B }  /\  ran  { <. A ,  C >. ,  <. B ,  D >. }  C_  { C ,  D } ) )
2220, 21sylibr 204 1  |-  ( A  =/=  B  ->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } --> { C ,  D }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   _Vcvv 2956    u. cun 3318    C_ wss 3320   {csn 3814   {cpr 3815   <.cop 3817   dom cdm 4878   ran crn 4879   Fun wfun 5448    Fn wfn 5449   -->wf 5450
This theorem is referenced by:  fprg  5915  1sdom  7311  wlkntrllem1  21559  wlkntrllem3  21561  coinfliprv  24740  fprb  25397  axlowdimlem4  25884
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-fun 5456  df-fn 5457  df-f 5458
  Copyright terms: Public domain W3C validator