MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpr Unicode version

Theorem fpr 5784
Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
fpr.1  |-  A  e. 
_V
fpr.2  |-  B  e. 
_V
fpr.3  |-  C  e. 
_V
fpr.4  |-  D  e. 
_V
Assertion
Ref Expression
fpr  |-  ( A  =/=  B  ->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } --> { C ,  D }
)

Proof of Theorem fpr
StepHypRef Expression
1 fpr.1 . . . . . 6  |-  A  e. 
_V
2 fpr.2 . . . . . 6  |-  B  e. 
_V
3 fpr.3 . . . . . 6  |-  C  e. 
_V
4 fpr.4 . . . . . 6  |-  D  e. 
_V
51, 2, 3, 4funpr 5381 . . . . 5  |-  ( A  =/=  B  ->  Fun  {
<. A ,  C >. , 
<. B ,  D >. } )
63, 4dmprop 5227 . . . . 5  |-  dom  { <. A ,  C >. , 
<. B ,  D >. }  =  { A ,  B }
75, 6jctir 524 . . . 4  |-  ( A  =/=  B  ->  ( Fun  { <. A ,  C >. ,  <. B ,  D >. }  /\  dom  { <. A ,  C >. , 
<. B ,  D >. }  =  { A ,  B } ) )
8 df-fn 5337 . . . 4  |-  ( {
<. A ,  C >. , 
<. B ,  D >. }  Fn  { A ,  B }  <->  ( Fun  { <. A ,  C >. , 
<. B ,  D >. }  /\  dom  { <. A ,  C >. ,  <. B ,  D >. }  =  { A ,  B }
) )
97, 8sylibr 203 . . 3  |-  ( A  =/=  B  ->  { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B }
)
10 df-pr 3723 . . . . . 6  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )
1110rneqi 4984 . . . . 5  |-  ran  { <. A ,  C >. , 
<. B ,  D >. }  =  ran  ( {
<. A ,  C >. }  u.  { <. B ,  D >. } )
12 rnun 5168 . . . . 5  |-  ran  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )  =  ( ran  { <. A ,  C >. }  u.  ran  { <. B ,  D >. } )
131rnsnop 5232 . . . . . . 7  |-  ran  { <. A ,  C >. }  =  { C }
142rnsnop 5232 . . . . . . 7  |-  ran  { <. B ,  D >. }  =  { D }
1513, 14uneq12i 3403 . . . . . 6  |-  ( ran 
{ <. A ,  C >. }  u.  ran  { <. B ,  D >. } )  =  ( { C }  u.  { D } )
16 df-pr 3723 . . . . . 6  |-  { C ,  D }  =  ( { C }  u.  { D } )
1715, 16eqtr4i 2381 . . . . 5  |-  ( ran 
{ <. A ,  C >. }  u.  ran  { <. B ,  D >. } )  =  { C ,  D }
1811, 12, 173eqtri 2382 . . . 4  |-  ran  { <. A ,  C >. , 
<. B ,  D >. }  =  { C ,  D }
1918eqimssi 3308 . . 3  |-  ran  { <. A ,  C >. , 
<. B ,  D >. } 
C_  { C ,  D }
209, 19jctir 524 . 2  |-  ( A  =/=  B  ->  ( { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B }  /\  ran  {
<. A ,  C >. , 
<. B ,  D >. } 
C_  { C ,  D } ) )
21 df-f 5338 . 2  |-  ( {
<. A ,  C >. , 
<. B ,  D >. } : { A ,  B } --> { C ,  D }  <->  ( { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B }  /\  ran  { <. A ,  C >. ,  <. B ,  D >. }  C_  { C ,  D } ) )
2220, 21sylibr 203 1  |-  ( A  =/=  B  ->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } --> { C ,  D }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710    =/= wne 2521   _Vcvv 2864    u. cun 3226    C_ wss 3228   {csn 3716   {cpr 3717   <.cop 3719   dom cdm 4768   ran crn 4769   Fun wfun 5328    Fn wfn 5329   -->wf 5330
This theorem is referenced by:  fprg  5785  1sdom  7150  coinfliprv  23989  fprb  24687  axlowdimlem4  25132  prfOLD  25689  ftp  26216  wlkntrllem1  27684  wlkntrllem5  27688
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pr 4293
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-br 4103  df-opab 4157  df-id 4388  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-fun 5336  df-fn 5337  df-f 5338
  Copyright terms: Public domain W3C validator