MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe Unicode version

Theorem fpwwe 8264
Description: Given any function  F from the powerset of  A to  A, canth2 7010 gives that the function is not injective, but we can say rather more than that. There is a unique well-ordered subset  <. X , 
( W `  X
) >. which "agrees" with  F in the sense that each initial segment maps to its upper bound, and such that the entire set maps to an element of the set (so that it cannot be extended without losing the well-ordering). This theorem can be used to prove dfac8a 7653. Theorem 1.1 of [KanamoriPincus] p. 415. (Contributed by Mario Carneiro, 18-May-2015.)
Hypotheses
Ref Expression
fpwwe.1  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) ) }
fpwwe.2  |-  ( ph  ->  A  e.  _V )
fpwwe.3  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  dom  card ) )  ->  ( F `  x )  e.  A )
fpwwe.4  |-  X  = 
U.  dom  W
Assertion
Ref Expression
fpwwe  |-  ( ph  ->  ( ( Y W R  /\  ( F `
 Y )  e.  Y )  <->  ( Y  =  X  /\  R  =  ( W `  X
) ) ) )
Distinct variable groups:    x, r, A    y, r, F, x    ph, r, x, y    R, r, x, y    X, r, x, y    Y, r, x, y    W, r, x, y
Allowed substitution hint:    A( y)

Proof of Theorem fpwwe
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 df-ov 5823 . . . . . 6  |-  ( Y ( F  o.  1st ) R )  =  ( ( F  o.  1st ) `  <. Y ,  R >. )
2 fo1st 6101 . . . . . . . 8  |-  1st : _V -onto-> _V
3 fofn 5419 . . . . . . . 8  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
42, 3ax-mp 8 . . . . . . 7  |-  1st  Fn  _V
5 opex 4236 . . . . . . 7  |-  <. Y ,  R >.  e.  _V
6 fvco2 5556 . . . . . . 7  |-  ( ( 1st  Fn  _V  /\  <. Y ,  R >.  e. 
_V )  ->  (
( F  o.  1st ) `  <. Y ,  R >. )  =  ( F `  ( 1st `  <. Y ,  R >. ) ) )
74, 5, 6mp2an 653 . . . . . 6  |-  ( ( F  o.  1st ) `  <. Y ,  R >. )  =  ( F `
 ( 1st `  <. Y ,  R >. )
)
81, 7eqtri 2304 . . . . 5  |-  ( Y ( F  o.  1st ) R )  =  ( F `  ( 1st `  <. Y ,  R >. ) )
9 fpwwe.1 . . . . . . . . 9  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) ) }
109relopabi 4810 . . . . . . . 8  |-  Rel  W
11 brrelex12 4725 . . . . . . . 8  |-  ( ( Rel  W  /\  Y W R )  ->  ( Y  e.  _V  /\  R  e.  _V ) )
1210, 11mpan 651 . . . . . . 7  |-  ( Y W R  ->  ( Y  e.  _V  /\  R  e.  _V ) )
13 op1stg 6094 . . . . . . 7  |-  ( ( Y  e.  _V  /\  R  e.  _V )  ->  ( 1st `  <. Y ,  R >. )  =  Y )
1412, 13syl 15 . . . . . 6  |-  ( Y W R  ->  ( 1st `  <. Y ,  R >. )  =  Y )
1514fveq2d 5490 . . . . 5  |-  ( Y W R  ->  ( F `  ( 1st ` 
<. Y ,  R >. ) )  =  ( F `
 Y ) )
168, 15syl5eq 2328 . . . 4  |-  ( Y W R  ->  ( Y ( F  o.  1st ) R )  =  ( F `  Y
) )
1716eleq1d 2350 . . 3  |-  ( Y W R  ->  (
( Y ( F  o.  1st ) R )  e.  Y  <->  ( F `  Y )  e.  Y
) )
1817pm5.32i 618 . 2  |-  ( ( Y W R  /\  ( Y ( F  o.  1st ) R )  e.  Y )  <->  ( Y W R  /\  ( F `  Y )  e.  Y ) )
19 vex 2792 . . . . . . . . . 10  |-  r  e. 
_V
20 cnvexg 5206 . . . . . . . . . 10  |-  ( r  e.  _V  ->  `' r  e.  _V )
21 imaexg 5025 . . . . . . . . . 10  |-  ( `' r  e.  _V  ->  ( `' r " {
y } )  e. 
_V )
2219, 20, 21mp2b 9 . . . . . . . . 9  |-  ( `' r " { y } )  e.  _V
23 vex 2792 . . . . . . . . . . . 12  |-  u  e. 
_V
2419inex1 4156 . . . . . . . . . . . 12  |-  ( r  i^i  ( u  X.  u ) )  e. 
_V
2523, 24algrflem 6186 . . . . . . . . . . 11  |-  ( u ( F  o.  1st ) ( r  i^i  ( u  X.  u
) ) )  =  ( F `  u
)
26 fveq2 5486 . . . . . . . . . . 11  |-  ( u  =  ( `' r
" { y } )  ->  ( F `  u )  =  ( F `  ( `' r " { y } ) ) )
2725, 26syl5eq 2328 . . . . . . . . . 10  |-  ( u  =  ( `' r
" { y } )  ->  ( u
( F  o.  1st ) ( r  i^i  ( u  X.  u
) ) )  =  ( F `  ( `' r " {
y } ) ) )
2827eqeq1d 2292 . . . . . . . . 9  |-  ( u  =  ( `' r
" { y } )  ->  ( (
u ( F  o.  1st ) ( r  i^i  ( u  X.  u
) ) )  =  y  <->  ( F `  ( `' r " {
y } ) )  =  y ) )
2922, 28sbcie 3026 . . . . . . . 8  |-  ( [. ( `' r " {
y } )  /  u ]. ( u ( F  o.  1st )
( r  i^i  (
u  X.  u ) ) )  =  y  <-> 
( F `  ( `' r " {
y } ) )  =  y )
3029ralbii 2568 . . . . . . 7  |-  ( A. y  e.  x  [. ( `' r " {
y } )  /  u ]. ( u ( F  o.  1st )
( r  i^i  (
u  X.  u ) ) )  =  y  <->  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y )
3130anbi2i 675 . . . . . 6  |-  ( ( r  We  x  /\  A. y  e.  x  [. ( `' r " {
y } )  /  u ]. ( u ( F  o.  1st )
( r  i^i  (
u  X.  u ) ) )  =  y )  <->  ( r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) )
3231anbi2i 675 . . . . 5  |-  ( ( ( x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. ( u ( F  o.  1st ) ( r  i^i  ( u  X.  u ) ) )  =  y ) )  <->  ( ( x 
C_  A  /\  r  C_  ( x  X.  x
) )  /\  (
r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) ) )
3332opabbii 4084 . . . 4  |-  { <. x ,  r >.  |  ( ( x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. ( u ( F  o.  1st ) ( r  i^i  ( u  X.  u ) ) )  =  y ) ) }  =  { <. x ,  r >.  |  ( ( x 
C_  A  /\  r  C_  ( x  X.  x
) )  /\  (
r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) ) }
349, 33eqtr4i 2307 . . 3  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. (
u ( F  o.  1st ) ( r  i^i  ( u  X.  u
) ) )  =  y ) ) }
35 fpwwe.2 . . 3  |-  ( ph  ->  A  e.  _V )
36 vex 2792 . . . . 5  |-  x  e. 
_V
3736, 19algrflem 6186 . . . 4  |-  ( x ( F  o.  1st ) r )  =  ( F `  x
)
38 simp1 955 . . . . . . 7  |-  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  ->  x  C_  A )
3936elpw 3632 . . . . . . 7  |-  ( x  e.  ~P A  <->  x  C_  A
)
4038, 39sylibr 203 . . . . . 6  |-  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  ->  x  e.  ~P A )
41 19.8a 1720 . . . . . . . 8  |-  ( r  We  x  ->  E. r 
r  We  x )
42413ad2ant3 978 . . . . . . 7  |-  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  ->  E. r 
r  We  x )
43 ween 7658 . . . . . . 7  |-  ( x  e.  dom  card  <->  E. r 
r  We  x )
4442, 43sylibr 203 . . . . . 6  |-  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  ->  x  e.  dom  card )
45 elin 3359 . . . . . 6  |-  ( x  e.  ( ~P A  i^i  dom  card )  <->  ( x  e.  ~P A  /\  x  e.  dom  card ) )
4640, 44, 45sylanbrc 645 . . . . 5  |-  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  ->  x  e.  ( ~P A  i^i  dom 
card ) )
47 fpwwe.3 . . . . 5  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  dom  card ) )  ->  ( F `  x )  e.  A )
4846, 47sylan2 460 . . . 4  |-  ( (
ph  /\  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) )  -> 
( F `  x
)  e.  A )
4937, 48syl5eqel 2368 . . 3  |-  ( (
ph  /\  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) )  -> 
( x ( F  o.  1st ) r )  e.  A )
50 fpwwe.4 . . 3  |-  X  = 
U.  dom  W
5134, 35, 49, 50fpwwe2 8261 . 2  |-  ( ph  ->  ( ( Y W R  /\  ( Y ( F  o.  1st ) R )  e.  Y
)  <->  ( Y  =  X  /\  R  =  ( W `  X
) ) ) )
5218, 51syl5bbr 250 1  |-  ( ph  ->  ( ( Y W R  /\  ( F `
 Y )  e.  Y )  <->  ( Y  =  X  /\  R  =  ( W `  X
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1685   A.wral 2544   _Vcvv 2789   [.wsbc 2992    i^i cin 3152    C_ wss 3153   ~Pcpw 3626   {csn 3641   <.cop 3644   U.cuni 3828   class class class wbr 4024   {copab 4077    We wwe 4350    X. cxp 4686   `'ccnv 4687    dom cdm 4688   "cima 4691    o. ccom 4692   Rel wrel 4693    Fn wfn 5216   -onto->wfo 5219   ` cfv 5221  (class class class)co 5820   1stc1st 6082   cardccrd 7564
This theorem is referenced by:  canth4  8265  canthnumlem  8266  canthp1lem2  8271
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5823  df-1st 6084  df-iota 6253  df-riota 6300  df-recs 6384  df-en 6860  df-oi 7221  df-card 7568
  Copyright terms: Public domain W3C validator