MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2 Unicode version

Theorem fpwwe2 8198
Description: Given any function  F from well-orderings of subsets of  A to  A, there is a unique well-ordered subset  <. X ,  ( W `  X )
>. which "agrees" with  F in the sense that each initial segment maps to its upper bound, and such that the entire set maps to an element of the set (so that it cannot be extended without losing the well-ordering). This theorem can be used to prove dfac8a 7590. Theorem 1.1 of [KanamoriPincus] p. 415. (Contributed by Mario Carneiro, 18-May-2015.)
Hypotheses
Ref Expression
fpwwe2.1  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. (
u F ( r  i^i  ( u  X.  u ) ) )  =  y ) ) }
fpwwe2.2  |-  ( ph  ->  A  e.  _V )
fpwwe2.3  |-  ( (
ph  /\  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) )  -> 
( x F r )  e.  A )
fpwwe2.4  |-  X  = 
U. dom  W
Assertion
Ref Expression
fpwwe2  |-  ( ph  ->  ( ( Y W R  /\  ( Y F R )  e.  Y )  <->  ( Y  =  X  /\  R  =  ( W `  X
) ) ) )
Distinct variable groups:    y, u, r, x, F    X, r, u, x, y    ph, r, u, x, y    A, r, x    R, r, u, x, y    Y, r, u, x, y    W, r, u, x, y
Allowed substitution hints:    A( y, u)

Proof of Theorem fpwwe2
StepHypRef Expression
1 fpwwe2.1 . . . . . . . . . . 11  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. (
u F ( r  i^i  ( u  X.  u ) ) )  =  y ) ) }
2 fpwwe2.2 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  _V )
3 fpwwe2.3 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) )  -> 
( x F r )  e.  A )
4 fpwwe2.4 . . . . . . . . . . 11  |-  X  = 
U. dom  W
51, 2, 3, 4fpwwe2lem11 8195 . . . . . . . . . 10  |-  ( ph  ->  W : dom  W --> ~P ( X  X.  X
) )
6 ffun 5294 . . . . . . . . . 10  |-  ( W : dom  W --> ~P ( X  X.  X )  ->  Fun  W )
75, 6syl 17 . . . . . . . . 9  |-  ( ph  ->  Fun  W )
8 funbrfv2b 5466 . . . . . . . . 9  |-  ( Fun 
W  ->  ( Y W R  <->  ( Y  e. 
dom  W  /\  ( W `  Y )  =  R ) ) )
97, 8syl 17 . . . . . . . 8  |-  ( ph  ->  ( Y W R  <-> 
( Y  e.  dom  W  /\  ( W `  Y )  =  R ) ) )
109simprbda 609 . . . . . . 7  |-  ( (
ph  /\  Y W R )  ->  Y  e.  dom  W )
1110adantrr 700 . . . . . 6  |-  ( (
ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  ->  Y  e.  dom  W )
12 elssuni 3796 . . . . . . 7  |-  ( Y  e.  dom  W  ->  Y  C_  U. dom  W
)
1312, 4syl6sseqr 3167 . . . . . 6  |-  ( Y  e.  dom  W  ->  Y  C_  X )
1411, 13syl 17 . . . . 5  |-  ( (
ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  ->  Y  C_  X )
15 simpl 445 . . . . . . 7  |-  ( ( X  C_  Y  /\  ( W `  X )  =  ( R  i^i  ( Y  X.  X
) ) )  ->  X  C_  Y )
1615a1i 12 . . . . . 6  |-  ( (
ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  -> 
( ( X  C_  Y  /\  ( W `  X )  =  ( R  i^i  ( Y  X.  X ) ) )  ->  X  C_  Y
) )
17 simplrr 740 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  ( Y F R )  e.  Y
)
181, 2, 3, 4fpwwe2lem12 8196 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  X  e.  dom  W
)
19 funfvbrb 5537 . . . . . . . . . . . . . . . . . . . 20  |-  ( Fun 
W  ->  ( X  e.  dom  W  <->  X W
( W `  X
) ) )
207, 19syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( X  e.  dom  W  <-> 
X W ( W `
 X ) ) )
2118, 20mpbid 203 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  X W ( W `
 X ) )
221, 2fpwwe2lem2 8187 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( X W ( W `  X )  <-> 
( ( X  C_  A  /\  ( W `  X )  C_  ( X  X.  X ) )  /\  ( ( W `
 X )  We  X  /\  A. y  e.  X  [. ( `' ( W `  X
) " { y } )  /  u ]. ( u F ( ( W `  X
)  i^i  ( u  X.  u ) ) )  =  y ) ) ) )
2321, 22mpbid 203 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( X  C_  A  /\  ( W `  X )  C_  ( X  X.  X ) )  /\  ( ( W `
 X )  We  X  /\  A. y  e.  X  [. ( `' ( W `  X
) " { y } )  /  u ]. ( u F ( ( W `  X
)  i^i  ( u  X.  u ) ) )  =  y ) ) )
2423ad2antrr 709 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  ( ( X 
C_  A  /\  ( W `  X )  C_  ( X  X.  X
) )  /\  (
( W `  X
)  We  X  /\  A. y  e.  X  [. ( `' ( W `  X ) " {
y } )  /  u ]. ( u F ( ( W `  X )  i^i  (
u  X.  u ) ) )  =  y ) ) )
2524simpld 447 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  ( X  C_  A  /\  ( W `  X )  C_  ( X  X.  X ) ) )
2625simpld 447 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  X  C_  A
)
272adantr 453 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  ->  A  e.  _V )
2827adantr 453 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  A  e.  _V )
29 ssexg 4100 . . . . . . . . . . . . . 14  |-  ( ( X  C_  A  /\  A  e.  _V )  ->  X  e.  _V )
3026, 28, 29syl2anc 645 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  X  e.  _V )
31 difexg 4102 . . . . . . . . . . . . 13  |-  ( X  e.  _V  ->  ( X  \  Y )  e. 
_V )
3230, 31syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  ( X  \  Y )  e.  _V )
3324simprd 451 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  ( ( W `
 X )  We  X  /\  A. y  e.  X  [. ( `' ( W `  X
) " { y } )  /  u ]. ( u F ( ( W `  X
)  i^i  ( u  X.  u ) ) )  =  y ) )
3433simpld 447 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  ( W `  X )  We  X
)
35 wefr 4320 . . . . . . . . . . . . 13  |-  ( ( W `  X )  We  X  ->  ( W `  X )  Fr  X )
3634, 35syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  ( W `  X )  Fr  X
)
37 difss 3245 . . . . . . . . . . . . 13  |-  ( X 
\  Y )  C_  X
3837a1i 12 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  ( X  \  Y )  C_  X
)
39 fri 4292 . . . . . . . . . . . . 13  |-  ( ( ( ( X  \  Y )  e.  _V  /\  ( W `  X
)  Fr  X )  /\  ( ( X 
\  Y )  C_  X  /\  ( X  \  Y )  =/=  (/) ) )  ->  E. z  e.  ( X  \  Y ) A. w  e.  ( X  \  Y )  -.  w ( W `
 X ) z )
4039expr 601 . . . . . . . . . . . 12  |-  ( ( ( ( X  \  Y )  e.  _V  /\  ( W `  X
)  Fr  X )  /\  ( X  \  Y )  C_  X
)  ->  ( ( X  \  Y )  =/=  (/)  ->  E. z  e.  ( X  \  Y ) A. w  e.  ( X  \  Y )  -.  w ( W `
 X ) z ) )
4132, 36, 38, 40syl21anc 1186 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  ( ( X 
\  Y )  =/=  (/)  ->  E. z  e.  ( X  \  Y ) A. w  e.  ( X  \  Y )  -.  w ( W `
 X ) z ) )
42 ssdif0 3455 . . . . . . . . . . . . . . 15  |-  ( ( X  i^i  ( `' ( W `  X
) " { z } ) )  C_  Y 
<->  ( ( X  i^i  ( `' ( W `  X ) " {
z } ) ) 
\  Y )  =  (/) )
43 indif1 3355 . . . . . . . . . . . . . . . 16  |-  ( ( X  \  Y )  i^i  ( `' ( W `  X )
" { z } ) )  =  ( ( X  i^i  ( `' ( W `  X ) " {
z } ) ) 
\  Y )
4443eqeq1i 2263 . . . . . . . . . . . . . . 15  |-  ( ( ( X  \  Y
)  i^i  ( `' ( W `  X )
" { z } ) )  =  (/)  <->  (
( X  i^i  ( `' ( W `  X ) " {
z } ) ) 
\  Y )  =  (/) )
45 disj 3437 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  \  Y
)  i^i  ( `' ( W `  X )
" { z } ) )  =  (/)  <->  A. w  e.  ( X  \  Y )  -.  w  e.  ( `' ( W `
 X ) " { z } ) )
46 vex 2743 . . . . . . . . . . . . . . . . . . 19  |-  z  e. 
_V
47 vex 2743 . . . . . . . . . . . . . . . . . . . 20  |-  w  e. 
_V
4847eliniseg 4995 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  _V  ->  (
w  e.  ( `' ( W `  X
) " { z } )  <->  w ( W `  X )
z ) )
4946, 48ax-mp 10 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  ( `' ( W `  X )
" { z } )  <->  w ( W `
 X ) z )
5049notbii 289 . . . . . . . . . . . . . . . . 17  |-  ( -.  w  e.  ( `' ( W `  X
) " { z } )  <->  -.  w
( W `  X
) z )
5150ralbii 2538 . . . . . . . . . . . . . . . 16  |-  ( A. w  e.  ( X  \  Y )  -.  w  e.  ( `' ( W `
 X ) " { z } )  <->  A. w  e.  ( X  \  Y )  -.  w ( W `  X ) z )
5245, 51bitri 242 . . . . . . . . . . . . . . 15  |-  ( ( ( X  \  Y
)  i^i  ( `' ( W `  X )
" { z } ) )  =  (/)  <->  A. w  e.  ( X  \  Y )  -.  w
( W `  X
) z )
5342, 44, 523bitr2i 266 . . . . . . . . . . . . . 14  |-  ( ( X  i^i  ( `' ( W `  X
) " { z } ) )  C_  Y 
<-> 
A. w  e.  ( X  \  Y )  -.  w ( W `
 X ) z )
54 cnvimass 4986 . . . . . . . . . . . . . . . . 17  |-  ( `' ( W `  X
) " { z } )  C_  dom  (  W `  X )
5525simprd 451 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  ( W `  X )  C_  ( X  X.  X ) )
56 dmss 4831 . . . . . . . . . . . . . . . . . . 19  |-  ( ( W `  X ) 
C_  ( X  X.  X )  ->  dom  (  W `  X ) 
C_  dom  (  X  X.  X ) )
5755, 56syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  dom  (  W `  X )  C_  dom  (  X  X.  X
) )
58 dmxpid 4851 . . . . . . . . . . . . . . . . . 18  |-  dom  (  X  X.  X )  =  X
5957, 58syl6sseq 3166 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  dom  (  W `  X )  C_  X
)
6054, 59syl5ss 3132 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  ( `' ( W `  X )
" { z } )  C_  X )
61 dfss1 3315 . . . . . . . . . . . . . . . 16  |-  ( ( `' ( W `  X ) " {
z } )  C_  X 
<->  ( X  i^i  ( `' ( W `  X ) " {
z } ) )  =  ( `' ( W `  X )
" { z } ) )
6260, 61sylib 190 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  ( X  i^i  ( `' ( W `  X ) " {
z } ) )  =  ( `' ( W `  X )
" { z } ) )
6362sseq1d 3147 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  ( ( X  i^i  ( `' ( W `  X )
" { z } ) )  C_  Y  <->  ( `' ( W `  X ) " {
z } )  C_  Y ) )
6453, 63syl5bbr 252 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  ( A. w  e.  ( X  \  Y
)  -.  w ( W `  X ) z  <->  ( `' ( W `  X )
" { z } )  C_  Y )
)
6564rexbidv 2535 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  ( E. z  e.  ( X  \  Y
) A. w  e.  ( X  \  Y
)  -.  w ( W `  X ) z  <->  E. z  e.  ( X  \  Y ) ( `' ( W `
 X ) " { z } ) 
C_  Y ) )
66 eldifn 3241 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( z  e.  ( X  \  Y )  ->  -.  z  e.  Y )
6766ad2antrl 711 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  ->  -.  z  e.  Y
)
68 eleq1 2316 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( w  =  z  ->  (
w  e.  Y  <->  z  e.  Y ) )
6968notbid 287 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( w  =  z  ->  ( -.  w  e.  Y  <->  -.  z  e.  Y ) )
7067, 69syl5ibrcom 215 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  -> 
( w  =  z  ->  -.  w  e.  Y ) )
7170con2d 109 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  -> 
( w  e.  Y  ->  -.  w  =  z ) )
7271imp 420 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y
) )  /\  ( Y  C_  X  /\  R  =  ( ( W `
 X )  i^i  ( X  X.  Y
) ) ) )  /\  ( z  e.  ( X  \  Y
)  /\  ( `' ( W `  X )
" { z } )  C_  Y )
)  /\  w  e.  Y )  ->  -.  w  =  z )
7367adantr 453 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y
) )  /\  ( Y  C_  X  /\  R  =  ( ( W `
 X )  i^i  ( X  X.  Y
) ) ) )  /\  ( z  e.  ( X  \  Y
)  /\  ( `' ( W `  X )
" { z } )  C_  Y )
)  /\  w  e.  Y )  ->  -.  z  e.  Y )
74 simprr 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) )
7574ad2antrr 709 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y
) )  /\  ( Y  C_  X  /\  R  =  ( ( W `
 X )  i^i  ( X  X.  Y
) ) ) )  /\  ( z  e.  ( X  \  Y
)  /\  ( `' ( W `  X )
" { z } )  C_  Y )
)  /\  w  e.  Y )  ->  R  =  ( ( W `
 X )  i^i  ( X  X.  Y
) ) )
7675breqd 3974 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y
) )  /\  ( Y  C_  X  /\  R  =  ( ( W `
 X )  i^i  ( X  X.  Y
) ) ) )  /\  ( z  e.  ( X  \  Y
)  /\  ( `' ( W `  X )
" { z } )  C_  Y )
)  /\  w  e.  Y )  ->  (
z R w  <->  z (
( W `  X
)  i^i  ( X  X.  Y ) ) w ) )
77 eldifi 3240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( z  e.  ( X  \  Y )  ->  z  e.  X )
7877ad2antrl 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  -> 
z  e.  X )
7978adantr 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y
) )  /\  ( Y  C_  X  /\  R  =  ( ( W `
 X )  i^i  ( X  X.  Y
) ) ) )  /\  ( z  e.  ( X  \  Y
)  /\  ( `' ( W `  X )
" { z } )  C_  Y )
)  /\  w  e.  Y )  ->  z  e.  X )
80 simpr 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y
) )  /\  ( Y  C_  X  /\  R  =  ( ( W `
 X )  i^i  ( X  X.  Y
) ) ) )  /\  ( z  e.  ( X  \  Y
)  /\  ( `' ( W `  X )
" { z } )  C_  Y )
)  /\  w  e.  Y )  ->  w  e.  Y )
81 brxp 4673 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( z ( X  X.  Y
) w  <->  ( z  e.  X  /\  w  e.  Y ) )
8279, 80, 81sylanbrc 648 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y
) )  /\  ( Y  C_  X  /\  R  =  ( ( W `
 X )  i^i  ( X  X.  Y
) ) ) )  /\  ( z  e.  ( X  \  Y
)  /\  ( `' ( W `  X )
" { z } )  C_  Y )
)  /\  w  e.  Y )  ->  z
( X  X.  Y
) w )
83 brin 4010 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( z ( ( W `  X )  i^i  ( X  X.  Y ) ) w  <->  ( z ( W `  X ) w  /\  z ( X  X.  Y ) w ) )
8483rbaib 878 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( z ( X  X.  Y
) w  ->  (
z ( ( W `
 X )  i^i  ( X  X.  Y
) ) w  <->  z ( W `  X )
w ) )
8582, 84syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y
) )  /\  ( Y  C_  X  /\  R  =  ( ( W `
 X )  i^i  ( X  X.  Y
) ) ) )  /\  ( z  e.  ( X  \  Y
)  /\  ( `' ( W `  X )
" { z } )  C_  Y )
)  /\  w  e.  Y )  ->  (
z ( ( W `
 X )  i^i  ( X  X.  Y
) ) w  <->  z ( W `  X )
w ) )
8676, 85bitrd 246 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y
) )  /\  ( Y  C_  X  /\  R  =  ( ( W `
 X )  i^i  ( X  X.  Y
) ) ) )  /\  ( z  e.  ( X  \  Y
)  /\  ( `' ( W `  X )
" { z } )  C_  Y )
)  /\  w  e.  Y )  ->  (
z R w  <->  z ( W `  X )
w ) )
871, 2fpwwe2lem2 8187 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ph  ->  ( Y W R  <-> 
( ( Y  C_  A  /\  R  C_  ( Y  X.  Y ) )  /\  ( R  We  Y  /\  A. y  e.  Y  [. ( `' R " { y } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  y ) ) ) )
8887biimpa 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
ph  /\  Y W R )  ->  (
( Y  C_  A  /\  R  C_  ( Y  X.  Y ) )  /\  ( R  We  Y  /\  A. y  e.  Y  [. ( `' R " { y } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  y ) ) )
8988adantrr 700 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  -> 
( ( Y  C_  A  /\  R  C_  ( Y  X.  Y ) )  /\  ( R  We  Y  /\  A. y  e.  Y  [. ( `' R " { y } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  y ) ) )
9089simpld 447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  -> 
( Y  C_  A  /\  R  C_  ( Y  X.  Y ) ) )
9190simprd 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  ->  R  C_  ( Y  X.  Y ) )
9291ad3antrrr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y
) )  /\  ( Y  C_  X  /\  R  =  ( ( W `
 X )  i^i  ( X  X.  Y
) ) ) )  /\  ( z  e.  ( X  \  Y
)  /\  ( `' ( W `  X )
" { z } )  C_  Y )
)  /\  w  e.  Y )  ->  R  C_  ( Y  X.  Y
) )
9392ssbrd 4004 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y
) )  /\  ( Y  C_  X  /\  R  =  ( ( W `
 X )  i^i  ( X  X.  Y
) ) ) )  /\  ( z  e.  ( X  \  Y
)  /\  ( `' ( W `  X )
" { z } )  C_  Y )
)  /\  w  e.  Y )  ->  (
z R w  -> 
z ( Y  X.  Y ) w ) )
94 brxp 4673 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( z ( Y  X.  Y
) w  <->  ( z  e.  Y  /\  w  e.  Y ) )
9594simplbi 448 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z ( Y  X.  Y
) w  ->  z  e.  Y )
9693, 95syl6 31 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y
) )  /\  ( Y  C_  X  /\  R  =  ( ( W `
 X )  i^i  ( X  X.  Y
) ) ) )  /\  ( z  e.  ( X  \  Y
)  /\  ( `' ( W `  X )
" { z } )  C_  Y )
)  /\  w  e.  Y )  ->  (
z R w  -> 
z  e.  Y ) )
9786, 96sylbird 228 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y
) )  /\  ( Y  C_  X  /\  R  =  ( ( W `
 X )  i^i  ( X  X.  Y
) ) ) )  /\  ( z  e.  ( X  \  Y
)  /\  ( `' ( W `  X )
" { z } )  C_  Y )
)  /\  w  e.  Y )  ->  (
z ( W `  X ) w  -> 
z  e.  Y ) )
9873, 97mtod 170 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y
) )  /\  ( Y  C_  X  /\  R  =  ( ( W `
 X )  i^i  ( X  X.  Y
) ) ) )  /\  ( z  e.  ( X  \  Y
)  /\  ( `' ( W `  X )
" { z } )  C_  Y )
)  /\  w  e.  Y )  ->  -.  z ( W `  X ) w )
9934ad2antrr 709 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y
) )  /\  ( Y  C_  X  /\  R  =  ( ( W `
 X )  i^i  ( X  X.  Y
) ) ) )  /\  ( z  e.  ( X  \  Y
)  /\  ( `' ( W `  X )
" { z } )  C_  Y )
)  /\  w  e.  Y )  ->  ( W `  X )  We  X )
100 weso 4321 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( W `  X )  We  X  ->  ( W `  X )  Or  X )
10199, 100syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y
) )  /\  ( Y  C_  X  /\  R  =  ( ( W `
 X )  i^i  ( X  X.  Y
) ) ) )  /\  ( z  e.  ( X  \  Y
)  /\  ( `' ( W `  X )
" { z } )  C_  Y )
)  /\  w  e.  Y )  ->  ( W `  X )  Or  X )
10214ad2antrr 709 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  ->  Y  C_  X )
103102sselda 3122 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y
) )  /\  ( Y  C_  X  /\  R  =  ( ( W `
 X )  i^i  ( X  X.  Y
) ) ) )  /\  ( z  e.  ( X  \  Y
)  /\  ( `' ( W `  X )
" { z } )  C_  Y )
)  /\  w  e.  Y )  ->  w  e.  X )
104 sotric 4277 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( W `  X
)  Or  X  /\  ( w  e.  X  /\  z  e.  X
) )  ->  (
w ( W `  X ) z  <->  -.  (
w  =  z  \/  z ( W `  X ) w ) ) )
105 ioran 478 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( -.  ( w  =  z  \/  z ( W `
 X ) w )  <->  ( -.  w  =  z  /\  -.  z
( W `  X
) w ) )
106104, 105syl6bb 254 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( W `  X
)  Or  X  /\  ( w  e.  X  /\  z  e.  X
) )  ->  (
w ( W `  X ) z  <->  ( -.  w  =  z  /\  -.  z ( W `  X ) w ) ) )
107101, 103, 79, 106syl12anc 1185 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y
) )  /\  ( Y  C_  X  /\  R  =  ( ( W `
 X )  i^i  ( X  X.  Y
) ) ) )  /\  ( z  e.  ( X  \  Y
)  /\  ( `' ( W `  X )
" { z } )  C_  Y )
)  /\  w  e.  Y )  ->  (
w ( W `  X ) z  <->  ( -.  w  =  z  /\  -.  z ( W `  X ) w ) ) )
10872, 98, 107mpbir2and 893 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y
) )  /\  ( Y  C_  X  /\  R  =  ( ( W `
 X )  i^i  ( X  X.  Y
) ) ) )  /\  ( z  e.  ( X  \  Y
)  /\  ( `' ( W `  X )
" { z } )  C_  Y )
)  /\  w  e.  Y )  ->  w
( W `  X
) z )
109108, 49sylibr 205 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y
) )  /\  ( Y  C_  X  /\  R  =  ( ( W `
 X )  i^i  ( X  X.  Y
) ) ) )  /\  ( z  e.  ( X  \  Y
)  /\  ( `' ( W `  X )
" { z } )  C_  Y )
)  /\  w  e.  Y )  ->  w  e.  ( `' ( W `
 X ) " { z } ) )
110109ex 425 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  -> 
( w  e.  Y  ->  w  e.  ( `' ( W `  X
) " { z } ) ) )
111110ssrdv 3127 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  ->  Y  C_  ( `' ( W `  X )
" { z } ) )
112 simprr 736 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  -> 
( `' ( W `
 X ) " { z } ) 
C_  Y )
113111, 112eqssd 3138 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  ->  Y  =  ( `' ( W `  X )
" { z } ) )
114 in32 3323 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( W `  X
)  i^i  ( X  X.  Y ) )  i^i  ( Y  X.  Y
) )  =  ( ( ( W `  X )  i^i  ( Y  X.  Y ) )  i^i  ( X  X.  Y ) )
115 simplrr 740 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  ->  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) )
116115ineq1d 3311 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  -> 
( R  i^i  ( Y  X.  Y ) )  =  ( ( ( W `  X )  i^i  ( X  X.  Y ) )  i^i  ( Y  X.  Y
) ) )
11791ad2antrr 709 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  ->  R  C_  ( Y  X.  Y ) )
118 df-ss 3108 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R 
C_  ( Y  X.  Y )  <->  ( R  i^i  ( Y  X.  Y
) )  =  R )
119117, 118sylib 190 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  -> 
( R  i^i  ( Y  X.  Y ) )  =  R )
120116, 119eqtr3d 2290 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  -> 
( ( ( W `
 X )  i^i  ( X  X.  Y
) )  i^i  ( Y  X.  Y ) )  =  R )
121 inss2 3332 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( W `  X )  i^i  ( Y  X.  Y ) )  C_  ( Y  X.  Y
)
122 xpss1 4748 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Y 
C_  X  ->  ( Y  X.  Y )  C_  ( X  X.  Y
) )
123102, 122syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  -> 
( Y  X.  Y
)  C_  ( X  X.  Y ) )
124121, 123syl5ss 3132 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  -> 
( ( W `  X )  i^i  ( Y  X.  Y ) ) 
C_  ( X  X.  Y ) )
125 df-ss 3108 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( W `  X
)  i^i  ( Y  X.  Y ) )  C_  ( X  X.  Y
)  <->  ( ( ( W `  X )  i^i  ( Y  X.  Y ) )  i^i  ( X  X.  Y
) )  =  ( ( W `  X
)  i^i  ( Y  X.  Y ) ) )
126124, 125sylib 190 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  -> 
( ( ( W `
 X )  i^i  ( Y  X.  Y
) )  i^i  ( X  X.  Y ) )  =  ( ( W `
 X )  i^i  ( Y  X.  Y
) ) )
127114, 120, 1263eqtr3a 2312 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  ->  R  =  ( ( W `  X )  i^i  ( Y  X.  Y
) ) )
128113, 113xpeq12d 4667 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  -> 
( Y  X.  Y
)  =  ( ( `' ( W `  X ) " {
z } )  X.  ( `' ( W `
 X ) " { z } ) ) )
129128ineq2d 3312 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  -> 
( ( W `  X )  i^i  ( Y  X.  Y ) )  =  ( ( W `
 X )  i^i  ( ( `' ( W `  X )
" { z } )  X.  ( `' ( W `  X
) " { z } ) ) ) )
130127, 129eqtrd 2288 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  ->  R  =  ( ( W `  X )  i^i  ( ( `' ( W `  X )
" { z } )  X.  ( `' ( W `  X
) " { z } ) ) ) )
131113, 130oveq12d 5775 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  -> 
( Y F R )  =  ( ( `' ( W `  X ) " {
z } ) F ( ( W `  X )  i^i  (
( `' ( W `
 X ) " { z } )  X.  ( `' ( W `  X )
" { z } ) ) ) ) )
13228adantr 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  ->  A  e.  _V )
13321adantr 453 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  ->  X W ( W `  X ) )
134133ad2antrr 709 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  ->  X W ( W `  X ) )
1351, 132, 134fpwwe2lem3 8188 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y
) )  /\  ( Y  C_  X  /\  R  =  ( ( W `
 X )  i^i  ( X  X.  Y
) ) ) )  /\  ( z  e.  ( X  \  Y
)  /\  ( `' ( W `  X )
" { z } )  C_  Y )
)  /\  z  e.  X )  ->  (
( `' ( W `
 X ) " { z } ) F ( ( W `
 X )  i^i  ( ( `' ( W `  X )
" { z } )  X.  ( `' ( W `  X
) " { z } ) ) ) )  =  z )
13678, 135mpdan 652 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  -> 
( ( `' ( W `  X )
" { z } ) F ( ( W `  X )  i^i  ( ( `' ( W `  X
) " { z } )  X.  ( `' ( W `  X ) " {
z } ) ) ) )  =  z )
137131, 136eqtrd 2288 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  -> 
( Y F R )  =  z )
138 simprl 735 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  -> 
z  e.  ( X 
\  Y ) )
139137, 138eqeltrd 2330 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  -> 
( Y F R )  e.  ( X 
\  Y ) )
140 eldifn 3241 . . . . . . . . . . . . . . 15  |-  ( ( Y F R )  e.  ( X  \  Y )  ->  -.  ( Y F R )  e.  Y )
141139, 140syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  ( z  e.  ( X  \  Y )  /\  ( `' ( W `  X ) " {
z } )  C_  Y ) )  ->  -.  ( Y F R )  e.  Y )
142141expr 601 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) ) )  /\  z  e.  ( X  \  Y
) )  ->  (
( `' ( W `
 X ) " { z } ) 
C_  Y  ->  -.  ( Y F R )  e.  Y ) )
143142rexlimdva 2638 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  ( E. z  e.  ( X  \  Y
) ( `' ( W `  X )
" { z } )  C_  Y  ->  -.  ( Y F R )  e.  Y ) )
14465, 143sylbid 208 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  ( E. z  e.  ( X  \  Y
) A. w  e.  ( X  \  Y
)  -.  w ( W `  X ) z  ->  -.  ( Y F R )  e.  Y ) )
14541, 144syld 42 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  ( ( X 
\  Y )  =/=  (/)  ->  -.  ( Y F R )  e.  Y
) )
146145necon4ad 2480 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  ( ( Y F R )  e.  Y  ->  ( X  \  Y )  =  (/) ) )
14717, 146mpd 16 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  ( X  \  Y )  =  (/) )
148 ssdif0 3455 . . . . . . . 8  |-  ( X 
C_  Y  <->  ( X  \  Y )  =  (/) )
149147, 148sylibr 205 . . . . . . 7  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( Y  C_  X  /\  R  =  ( ( W `  X )  i^i  ( X  X.  Y
) ) ) )  ->  X  C_  Y
)
150149ex 425 . . . . . 6  |-  ( (
ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  -> 
( ( Y  C_  X  /\  R  =  ( ( W `  X
)  i^i  ( X  X.  Y ) ) )  ->  X  C_  Y
) )
1513adantlr 698 . . . . . . 7  |-  ( ( ( ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  /\  ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x ) )  -> 
( x F r )  e.  A )
152 simprl 735 . . . . . . 7  |-  ( (
ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  ->  Y W R )
1531, 27, 151, 133, 152fpwwe2lem10 8194 . . . . . 6  |-  ( (
ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  -> 
( ( X  C_  Y  /\  ( W `  X )  =  ( R  i^i  ( Y  X.  X ) ) )  \/  ( Y 
C_  X  /\  R  =  ( ( W `
 X )  i^i  ( X  X.  Y
) ) ) ) )
15416, 150, 153mpjaod 372 . . . . 5  |-  ( (
ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  ->  X  C_  Y )
15514, 154eqssd 3138 . . . 4  |-  ( (
ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  ->  Y  =  X )
1567adantr 453 . . . . . 6  |-  ( (
ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  ->  Fun  W )
157155, 152eqbrtrrd 3985 . . . . . 6  |-  ( (
ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  ->  X W R )
158 funbrfv 5460 . . . . . 6  |-  ( Fun 
W  ->  ( X W R  ->  ( W `
 X )  =  R ) )
159156, 157, 158sylc 58 . . . . 5  |-  ( (
ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  -> 
( W `  X
)  =  R )
160159eqcomd 2261 . . . 4  |-  ( (
ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  ->  R  =  ( W `  X ) )
161155, 160jca 520 . . 3  |-  ( (
ph  /\  ( Y W R  /\  ( Y F R )  e.  Y ) )  -> 
( Y  =  X  /\  R  =  ( W `  X ) ) )
162161ex 425 . 2  |-  ( ph  ->  ( ( Y W R  /\  ( Y F R )  e.  Y )  ->  ( Y  =  X  /\  R  =  ( W `  X ) ) ) )
1631, 2, 3, 4fpwwe2lem13 8197 . . . 4  |-  ( ph  ->  ( X F ( W `  X ) )  e.  X )
16421, 163jca 520 . . 3  |-  ( ph  ->  ( X W ( W `  X )  /\  ( X F ( W `  X
) )  e.  X
) )
165 breq12 3968 . . . 4  |-  ( ( Y  =  X  /\  R  =  ( W `  X ) )  -> 
( Y W R  <-> 
X W ( W `
 X ) ) )
166 oveq12 5766 . . . . 5  |-  ( ( Y  =  X  /\  R  =  ( W `  X ) )  -> 
( Y F R )  =  ( X F ( W `  X ) ) )
167 simpl 445 . . . . 5  |-  ( ( Y  =  X  /\  R  =  ( W `  X ) )  ->  Y  =  X )
168166, 167eleq12d 2324 . . . 4  |-  ( ( Y  =  X  /\  R  =  ( W `  X ) )  -> 
( ( Y F R )  e.  Y  <->  ( X F ( W `
 X ) )  e.  X ) )
169165, 168anbi12d 694 . . 3  |-  ( ( Y  =  X  /\  R  =  ( W `  X ) )  -> 
( ( Y W R  /\  ( Y F R )  e.  Y )  <->  ( X W ( W `  X )  /\  ( X F ( W `  X ) )  e.  X ) ) )
170164, 169syl5ibrcom 215 . 2  |-  ( ph  ->  ( ( Y  =  X  /\  R  =  ( W `  X
) )  ->  ( Y W R  /\  ( Y F R )  e.  Y ) ) )
171162, 170impbid 185 1  |-  ( ph  ->  ( ( Y W R  /\  ( Y F R )  e.  Y )  <->  ( Y  =  X  /\  R  =  ( W `  X
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   A.wral 2516   E.wrex 2517   _Vcvv 2740   [.wsbc 2935    \ cdif 3091    i^i cin 3093    C_ wss 3094   (/)c0 3397   ~Pcpw 3566   {csn 3581   U.cuni 3768   class class class wbr 3963   {copab 4016    Or wor 4250    Fr wfr 4286    We wwe 4288    X. cxp 4624   `'ccnv 4625   dom cdm 4626   "cima 4629   Fun wfun 4632   -->wf 4634   ` cfv 4638  (class class class)co 5757
This theorem is referenced by:  fpwwe  8201  canthwelem  8205  pwfseqlem4  8217
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-iota 6190  df-riota 6237  df-recs 6321  df-oi 7158
  Copyright terms: Public domain W3C validator