MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fr2nr Unicode version

Theorem fr2nr 4408
Description: A well-founded relation has no 2-cycle loops. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 30-May-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
fr2nr  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  ( B R C  /\  C R B ) )

Proof of Theorem fr2nr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prex 4254 . . . . . . 7  |-  { B ,  C }  e.  _V
21a1i 10 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  { B ,  C }  e.  _V )
3 simpl 443 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  R  Fr  A )
4 prssi 3808 . . . . . . 7  |-  ( ( B  e.  A  /\  C  e.  A )  ->  { B ,  C }  C_  A )
54adantl 452 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  { B ,  C }  C_  A
)
6 prnzg 3780 . . . . . . 7  |-  ( B  e.  A  ->  { B ,  C }  =/=  (/) )
76ad2antrl 708 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  { B ,  C }  =/=  (/) )
8 fri 4392 . . . . . 6  |-  ( ( ( { B ,  C }  e.  _V  /\  R  Fr  A )  /\  ( { B ,  C }  C_  A  /\  { B ,  C }  =/=  (/) ) )  ->  E. y  e.  { B ,  C } A. x  e.  { B ,  C }  -.  x R y )
92, 3, 5, 7, 8syl22anc 1183 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  E. y  e.  { B ,  C } A. x  e.  { B ,  C }  -.  x R y )
10 breq2 4064 . . . . . . . . 9  |-  ( y  =  B  ->  (
x R y  <->  x R B ) )
1110notbid 285 . . . . . . . 8  |-  ( y  =  B  ->  ( -.  x R y  <->  -.  x R B ) )
1211ralbidv 2597 . . . . . . 7  |-  ( y  =  B  ->  ( A. x  e.  { B ,  C }  -.  x R y  <->  A. x  e.  { B ,  C }  -.  x R B ) )
13 breq2 4064 . . . . . . . . 9  |-  ( y  =  C  ->  (
x R y  <->  x R C ) )
1413notbid 285 . . . . . . . 8  |-  ( y  =  C  ->  ( -.  x R y  <->  -.  x R C ) )
1514ralbidv 2597 . . . . . . 7  |-  ( y  =  C  ->  ( A. x  e.  { B ,  C }  -.  x R y  <->  A. x  e.  { B ,  C }  -.  x R C ) )
1612, 15rexprg 3717 . . . . . 6  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( E. y  e. 
{ B ,  C } A. x  e.  { B ,  C }  -.  x R y  <->  ( A. x  e.  { B ,  C }  -.  x R B  \/  A. x  e.  { B ,  C }  -.  x R C ) ) )
1716adantl 452 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( E. y  e.  { B ,  C } A. x  e.  { B ,  C }  -.  x R y  <-> 
( A. x  e. 
{ B ,  C }  -.  x R B  \/  A. x  e. 
{ B ,  C }  -.  x R C ) ) )
189, 17mpbid 201 . . . 4  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( A. x  e.  { B ,  C }  -.  x R B  \/  A. x  e.  { B ,  C }  -.  x R C ) )
19 prid2g 3767 . . . . . . 7  |-  ( C  e.  A  ->  C  e.  { B ,  C } )
2019ad2antll 709 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  C  e.  { B ,  C } )
21 breq1 4063 . . . . . . . 8  |-  ( x  =  C  ->  (
x R B  <->  C R B ) )
2221notbid 285 . . . . . . 7  |-  ( x  =  C  ->  ( -.  x R B  <->  -.  C R B ) )
2322rspcv 2914 . . . . . 6  |-  ( C  e.  { B ,  C }  ->  ( A. x  e.  { B ,  C }  -.  x R B  ->  -.  C R B ) )
2420, 23syl 15 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( A. x  e.  { B ,  C }  -.  x R B  ->  -.  C R B ) )
25 prid1g 3766 . . . . . . 7  |-  ( B  e.  A  ->  B  e.  { B ,  C } )
2625ad2antrl 708 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  B  e.  { B ,  C } )
27 breq1 4063 . . . . . . . 8  |-  ( x  =  B  ->  (
x R C  <->  B R C ) )
2827notbid 285 . . . . . . 7  |-  ( x  =  B  ->  ( -.  x R C  <->  -.  B R C ) )
2928rspcv 2914 . . . . . 6  |-  ( B  e.  { B ,  C }  ->  ( A. x  e.  { B ,  C }  -.  x R C  ->  -.  B R C ) )
3026, 29syl 15 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( A. x  e.  { B ,  C }  -.  x R C  ->  -.  B R C ) )
3124, 30orim12d 811 . . . 4  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  (
( A. x  e. 
{ B ,  C }  -.  x R B  \/  A. x  e. 
{ B ,  C }  -.  x R C )  ->  ( -.  C R B  \/  -.  B R C ) ) )
3218, 31mpd 14 . . 3  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( -.  C R B  \/  -.  B R C ) )
3332orcomd 377 . 2  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( -.  B R C  \/  -.  C R B ) )
34 ianor 474 . 2  |-  ( -.  ( B R C  /\  C R B )  <->  ( -.  B R C  \/  -.  C R B ) )
3533, 34sylibr 203 1  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  ( B R C  /\  C R B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1633    e. wcel 1701    =/= wne 2479   A.wral 2577   E.wrex 2578   _Vcvv 2822    C_ wss 3186   (/)c0 3489   {cpr 3675   class class class wbr 4060    Fr wfr 4386
This theorem is referenced by:  efrn2lp  4412  dfwe2  4610
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pr 4251
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-rab 2586  df-v 2824  df-sbc 3026  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-sn 3680  df-pr 3681  df-op 3683  df-br 4061  df-fr 4389
  Copyright terms: Public domain W3C validator