MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fr3nr Unicode version

Theorem fr3nr 4572
Description: A well-founded relation has no 3-cycle loops. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 10-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
fr3nr  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  -.  ( B R C  /\  C R D  /\  D R B ) )
Dummy variables  x  y are mutually distinct and distinct from all other variables.

Proof of Theorem fr3nr
StepHypRef Expression
1 tpex 4520 . . . . . . 7  |-  { B ,  C ,  D }  e.  _V
21a1i 12 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  { B ,  C ,  D }  e.  _V )
3 simpl 445 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  R  Fr  A )
4 df-tp 3651 . . . . . . 7  |-  { B ,  C ,  D }  =  ( { B ,  C }  u.  { D } )
5 simpr1 963 . . . . . . . . 9  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  B  e.  A )
6 simpr2 964 . . . . . . . . 9  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  C  e.  A )
7 prssi 3774 . . . . . . . . 9  |-  ( ( B  e.  A  /\  C  e.  A )  ->  { B ,  C }  C_  A )
85, 6, 7syl2anc 644 . . . . . . . 8  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  { B ,  C }  C_  A
)
9 simpr3 965 . . . . . . . . 9  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  D  e.  A )
109snssd 3763 . . . . . . . 8  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  { D }  C_  A )
118, 10unssd 3354 . . . . . . 7  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( { B ,  C }  u.  { D } ) 
C_  A )
124, 11syl5eqss 3225 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  { B ,  C ,  D }  C_  A )
13 snsstp1 3769 . . . . . . . 8  |-  { B }  C_  { B ,  C ,  D }
14 snssg 3757 . . . . . . . . 9  |-  ( B  e.  A  ->  ( B  e.  { B ,  C ,  D }  <->  { B }  C_  { B ,  C ,  D }
) )
155, 14syl 17 . . . . . . . 8  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( B  e.  { B ,  C ,  D }  <->  { B }  C_  { B ,  C ,  D }
) )
1613, 15mpbiri 226 . . . . . . 7  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  B  e.  { B ,  C ,  D } )
17 ne0i 3464 . . . . . . 7  |-  ( B  e.  { B ,  C ,  D }  ->  { B ,  C ,  D }  =/=  (/) )
1816, 17syl 17 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  { B ,  C ,  D }  =/=  (/) )
19 fri 4356 . . . . . 6  |-  ( ( ( { B ,  C ,  D }  e.  _V  /\  R  Fr  A )  /\  ( { B ,  C ,  D }  C_  A  /\  { B ,  C ,  D }  =/=  (/) ) )  ->  E. x  e.  { B ,  C ,  D } A. y  e. 
{ B ,  C ,  D }  -.  y R x )
202, 3, 12, 18, 19syl22anc 1185 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  E. x  e.  { B ,  C ,  D } A. y  e.  { B ,  C ,  D }  -.  y R x )
21 breq2 4030 . . . . . . . . 9  |-  ( x  =  B  ->  (
y R x  <->  y R B ) )
2221notbid 287 . . . . . . . 8  |-  ( x  =  B  ->  ( -.  y R x  <->  -.  y R B ) )
2322ralbidv 2566 . . . . . . 7  |-  ( x  =  B  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R x  <->  A. y  e.  { B ,  C ,  D }  -.  y R B ) )
24 breq2 4030 . . . . . . . . 9  |-  ( x  =  C  ->  (
y R x  <->  y R C ) )
2524notbid 287 . . . . . . . 8  |-  ( x  =  C  ->  ( -.  y R x  <->  -.  y R C ) )
2625ralbidv 2566 . . . . . . 7  |-  ( x  =  C  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R x  <->  A. y  e.  { B ,  C ,  D }  -.  y R C ) )
27 breq2 4030 . . . . . . . . 9  |-  ( x  =  D  ->  (
y R x  <->  y R D ) )
2827notbid 287 . . . . . . . 8  |-  ( x  =  D  ->  ( -.  y R x  <->  -.  y R D ) )
2928ralbidv 2566 . . . . . . 7  |-  ( x  =  D  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R x  <->  A. y  e.  { B ,  C ,  D }  -.  y R D ) )
3023, 26, 29rextpg 3688 . . . . . 6  |-  ( ( B  e.  A  /\  C  e.  A  /\  D  e.  A )  ->  ( E. x  e. 
{ B ,  C ,  D } A. y  e.  { B ,  C ,  D }  -.  y R x  <->  ( A. y  e.  { B ,  C ,  D }  -.  y R B  \/  A. y  e.  { B ,  C ,  D }  -.  y R C  \/  A. y  e.  { B ,  C ,  D }  -.  y R D ) ) )
3130adantl 454 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( E. x  e.  { B ,  C ,  D } A. y  e.  { B ,  C ,  D }  -.  y R x  <->  ( A. y  e.  { B ,  C ,  D }  -.  y R B  \/  A. y  e.  { B ,  C ,  D }  -.  y R C  \/  A. y  e.  { B ,  C ,  D }  -.  y R D ) ) )
3220, 31mpbid 203 . . . 4  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R B  \/  A. y  e.  { B ,  C ,  D }  -.  y R C  \/  A. y  e.  { B ,  C ,  D }  -.  y R D ) )
33 snsstp3 3771 . . . . . . 7  |-  { D }  C_  { B ,  C ,  D }
34 snssg 3757 . . . . . . . 8  |-  ( D  e.  A  ->  ( D  e.  { B ,  C ,  D }  <->  { D }  C_  { B ,  C ,  D }
) )
359, 34syl 17 . . . . . . 7  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( D  e.  { B ,  C ,  D }  <->  { D }  C_  { B ,  C ,  D }
) )
3633, 35mpbiri 226 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  D  e.  { B ,  C ,  D } )
37 breq1 4029 . . . . . . . 8  |-  ( y  =  D  ->  (
y R B  <->  D R B ) )
3837notbid 287 . . . . . . 7  |-  ( y  =  D  ->  ( -.  y R B  <->  -.  D R B ) )
3938rspcv 2883 . . . . . 6  |-  ( D  e.  { B ,  C ,  D }  ->  ( A. y  e. 
{ B ,  C ,  D }  -.  y R B  ->  -.  D R B ) )
4036, 39syl 17 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R B  ->  -.  D R B ) )
41 breq1 4029 . . . . . . . 8  |-  ( y  =  B  ->  (
y R C  <->  B R C ) )
4241notbid 287 . . . . . . 7  |-  ( y  =  B  ->  ( -.  y R C  <->  -.  B R C ) )
4342rspcv 2883 . . . . . 6  |-  ( B  e.  { B ,  C ,  D }  ->  ( A. y  e. 
{ B ,  C ,  D }  -.  y R C  ->  -.  B R C ) )
4416, 43syl 17 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R C  ->  -.  B R C ) )
45 snsstp2 3770 . . . . . . 7  |-  { C }  C_  { B ,  C ,  D }
46 snssg 3757 . . . . . . . 8  |-  ( C  e.  A  ->  ( C  e.  { B ,  C ,  D }  <->  { C }  C_  { B ,  C ,  D }
) )
476, 46syl 17 . . . . . . 7  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( C  e.  { B ,  C ,  D }  <->  { C }  C_  { B ,  C ,  D }
) )
4845, 47mpbiri 226 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  C  e.  { B ,  C ,  D } )
49 breq1 4029 . . . . . . . 8  |-  ( y  =  C  ->  (
y R D  <->  C R D ) )
5049notbid 287 . . . . . . 7  |-  ( y  =  C  ->  ( -.  y R D  <->  -.  C R D ) )
5150rspcv 2883 . . . . . 6  |-  ( C  e.  { B ,  C ,  D }  ->  ( A. y  e. 
{ B ,  C ,  D }  -.  y R D  ->  -.  C R D ) )
5248, 51syl 17 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R D  ->  -.  C R D ) )
5340, 44, 523orim123d 1262 . . . 4  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  (
( A. y  e. 
{ B ,  C ,  D }  -.  y R B  \/  A. y  e.  { B ,  C ,  D }  -.  y R C  \/  A. y  e.  { B ,  C ,  D }  -.  y R D )  ->  ( -.  D R B  \/  -.  B R C  \/  -.  C R D ) ) )
5432, 53mpd 16 . . 3  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( -.  D R B  \/  -.  B R C  \/  -.  C R D ) )
55 3ianor 951 . . 3  |-  ( -.  ( D R B  /\  B R C  /\  C R D )  <->  ( -.  D R B  \/  -.  B R C  \/  -.  C R D ) )
5654, 55sylibr 205 . 2  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  -.  ( D R B  /\  B R C  /\  C R D ) )
57 3anrot 941 . 2  |-  ( ( D R B  /\  B R C  /\  C R D )  <->  ( B R C  /\  C R D  /\  D R B ) )
5856, 57sylnib 297 1  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  -.  ( B R C  /\  C R D  /\  D R B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    \/ w3o 935    /\ w3a 936    = wceq 1625    e. wcel 1687    =/= wne 2449   A.wral 2546   E.wrex 2547   _Vcvv 2791    u. cun 3153    C_ wss 3155   (/)c0 3458   {csn 3643   {cpr 3644   {ctp 3645   class class class wbr 4026    Fr wfr 4350
This theorem is referenced by:  epne3  4573  dfwe2  4574
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1638  ax-8 1646  ax-13 1689  ax-14 1691  ax-6 1706  ax-7 1711  ax-11 1718  ax-12 1870  ax-ext 2267  ax-sep 4144  ax-nul 4152  ax-pr 4215  ax-un 4513
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1531  df-nf 1534  df-sb 1633  df-clab 2273  df-cleq 2279  df-clel 2282  df-nfc 2411  df-ne 2451  df-ral 2551  df-rex 2552  df-rab 2555  df-v 2793  df-sbc 2995  df-dif 3158  df-un 3160  df-in 3162  df-ss 3169  df-nul 3459  df-if 3569  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3831  df-br 4027  df-fr 4353
  Copyright terms: Public domain W3C validator