MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fr3nr Unicode version

Theorem fr3nr 4571
Description: A well-founded relation has no 3-cycle loops. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 10-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
fr3nr  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  -.  ( B R C  /\  C R D  /\  D R B ) )

Proof of Theorem fr3nr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tpex 4519 . . . . . . 7  |-  { B ,  C ,  D }  e.  _V
21a1i 10 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  { B ,  C ,  D }  e.  _V )
3 simpl 443 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  R  Fr  A )
4 df-tp 3648 . . . . . . 7  |-  { B ,  C ,  D }  =  ( { B ,  C }  u.  { D } )
5 simpr1 961 . . . . . . . . 9  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  B  e.  A )
6 simpr2 962 . . . . . . . . 9  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  C  e.  A )
7 prssi 3771 . . . . . . . . 9  |-  ( ( B  e.  A  /\  C  e.  A )  ->  { B ,  C }  C_  A )
85, 6, 7syl2anc 642 . . . . . . . 8  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  { B ,  C }  C_  A
)
9 simpr3 963 . . . . . . . . 9  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  D  e.  A )
109snssd 3760 . . . . . . . 8  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  { D }  C_  A )
118, 10unssd 3351 . . . . . . 7  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( { B ,  C }  u.  { D } ) 
C_  A )
124, 11syl5eqss 3222 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  { B ,  C ,  D }  C_  A )
13 snsstp1 3766 . . . . . . . 8  |-  { B }  C_  { B ,  C ,  D }
14 snssg 3754 . . . . . . . . 9  |-  ( B  e.  A  ->  ( B  e.  { B ,  C ,  D }  <->  { B }  C_  { B ,  C ,  D }
) )
155, 14syl 15 . . . . . . . 8  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( B  e.  { B ,  C ,  D }  <->  { B }  C_  { B ,  C ,  D }
) )
1613, 15mpbiri 224 . . . . . . 7  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  B  e.  { B ,  C ,  D } )
17 ne0i 3461 . . . . . . 7  |-  ( B  e.  { B ,  C ,  D }  ->  { B ,  C ,  D }  =/=  (/) )
1816, 17syl 15 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  { B ,  C ,  D }  =/=  (/) )
19 fri 4355 . . . . . 6  |-  ( ( ( { B ,  C ,  D }  e.  _V  /\  R  Fr  A )  /\  ( { B ,  C ,  D }  C_  A  /\  { B ,  C ,  D }  =/=  (/) ) )  ->  E. x  e.  { B ,  C ,  D } A. y  e. 
{ B ,  C ,  D }  -.  y R x )
202, 3, 12, 18, 19syl22anc 1183 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  E. x  e.  { B ,  C ,  D } A. y  e.  { B ,  C ,  D }  -.  y R x )
21 breq2 4027 . . . . . . . . 9  |-  ( x  =  B  ->  (
y R x  <->  y R B ) )
2221notbid 285 . . . . . . . 8  |-  ( x  =  B  ->  ( -.  y R x  <->  -.  y R B ) )
2322ralbidv 2563 . . . . . . 7  |-  ( x  =  B  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R x  <->  A. y  e.  { B ,  C ,  D }  -.  y R B ) )
24 breq2 4027 . . . . . . . . 9  |-  ( x  =  C  ->  (
y R x  <->  y R C ) )
2524notbid 285 . . . . . . . 8  |-  ( x  =  C  ->  ( -.  y R x  <->  -.  y R C ) )
2625ralbidv 2563 . . . . . . 7  |-  ( x  =  C  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R x  <->  A. y  e.  { B ,  C ,  D }  -.  y R C ) )
27 breq2 4027 . . . . . . . . 9  |-  ( x  =  D  ->  (
y R x  <->  y R D ) )
2827notbid 285 . . . . . . . 8  |-  ( x  =  D  ->  ( -.  y R x  <->  -.  y R D ) )
2928ralbidv 2563 . . . . . . 7  |-  ( x  =  D  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R x  <->  A. y  e.  { B ,  C ,  D }  -.  y R D ) )
3023, 26, 29rextpg 3685 . . . . . 6  |-  ( ( B  e.  A  /\  C  e.  A  /\  D  e.  A )  ->  ( E. x  e. 
{ B ,  C ,  D } A. y  e.  { B ,  C ,  D }  -.  y R x  <->  ( A. y  e.  { B ,  C ,  D }  -.  y R B  \/  A. y  e.  { B ,  C ,  D }  -.  y R C  \/  A. y  e.  { B ,  C ,  D }  -.  y R D ) ) )
3130adantl 452 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( E. x  e.  { B ,  C ,  D } A. y  e.  { B ,  C ,  D }  -.  y R x  <->  ( A. y  e.  { B ,  C ,  D }  -.  y R B  \/  A. y  e.  { B ,  C ,  D }  -.  y R C  \/  A. y  e.  { B ,  C ,  D }  -.  y R D ) ) )
3220, 31mpbid 201 . . . 4  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R B  \/  A. y  e.  { B ,  C ,  D }  -.  y R C  \/  A. y  e.  { B ,  C ,  D }  -.  y R D ) )
33 snsstp3 3768 . . . . . . 7  |-  { D }  C_  { B ,  C ,  D }
34 snssg 3754 . . . . . . . 8  |-  ( D  e.  A  ->  ( D  e.  { B ,  C ,  D }  <->  { D }  C_  { B ,  C ,  D }
) )
359, 34syl 15 . . . . . . 7  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( D  e.  { B ,  C ,  D }  <->  { D }  C_  { B ,  C ,  D }
) )
3633, 35mpbiri 224 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  D  e.  { B ,  C ,  D } )
37 breq1 4026 . . . . . . . 8  |-  ( y  =  D  ->  (
y R B  <->  D R B ) )
3837notbid 285 . . . . . . 7  |-  ( y  =  D  ->  ( -.  y R B  <->  -.  D R B ) )
3938rspcv 2880 . . . . . 6  |-  ( D  e.  { B ,  C ,  D }  ->  ( A. y  e. 
{ B ,  C ,  D }  -.  y R B  ->  -.  D R B ) )
4036, 39syl 15 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R B  ->  -.  D R B ) )
41 breq1 4026 . . . . . . . 8  |-  ( y  =  B  ->  (
y R C  <->  B R C ) )
4241notbid 285 . . . . . . 7  |-  ( y  =  B  ->  ( -.  y R C  <->  -.  B R C ) )
4342rspcv 2880 . . . . . 6  |-  ( B  e.  { B ,  C ,  D }  ->  ( A. y  e. 
{ B ,  C ,  D }  -.  y R C  ->  -.  B R C ) )
4416, 43syl 15 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R C  ->  -.  B R C ) )
45 snsstp2 3767 . . . . . . 7  |-  { C }  C_  { B ,  C ,  D }
46 snssg 3754 . . . . . . . 8  |-  ( C  e.  A  ->  ( C  e.  { B ,  C ,  D }  <->  { C }  C_  { B ,  C ,  D }
) )
476, 46syl 15 . . . . . . 7  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( C  e.  { B ,  C ,  D }  <->  { C }  C_  { B ,  C ,  D }
) )
4845, 47mpbiri 224 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  C  e.  { B ,  C ,  D } )
49 breq1 4026 . . . . . . . 8  |-  ( y  =  C  ->  (
y R D  <->  C R D ) )
5049notbid 285 . . . . . . 7  |-  ( y  =  C  ->  ( -.  y R D  <->  -.  C R D ) )
5150rspcv 2880 . . . . . 6  |-  ( C  e.  { B ,  C ,  D }  ->  ( A. y  e. 
{ B ,  C ,  D }  -.  y R D  ->  -.  C R D ) )
5248, 51syl 15 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R D  ->  -.  C R D ) )
5340, 44, 523orim123d 1260 . . . 4  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  (
( A. y  e. 
{ B ,  C ,  D }  -.  y R B  \/  A. y  e.  { B ,  C ,  D }  -.  y R C  \/  A. y  e.  { B ,  C ,  D }  -.  y R D )  ->  ( -.  D R B  \/  -.  B R C  \/  -.  C R D ) ) )
5432, 53mpd 14 . . 3  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( -.  D R B  \/  -.  B R C  \/  -.  C R D ) )
55 3ianor 949 . . 3  |-  ( -.  ( D R B  /\  B R C  /\  C R D )  <->  ( -.  D R B  \/  -.  B R C  \/  -.  C R D ) )
5654, 55sylibr 203 . 2  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  -.  ( D R B  /\  B R C  /\  C R D ) )
57 3anrot 939 . 2  |-  ( ( D R B  /\  B R C  /\  C R D )  <->  ( B R C  /\  C R D  /\  D R B ) )
5856, 57sylnib 295 1  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  -.  ( B R C  /\  C R D  /\  D R B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    \/ w3o 933    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   _Vcvv 2788    u. cun 3150    C_ wss 3152   (/)c0 3455   {csn 3640   {cpr 3641   {ctp 3642   class class class wbr 4023    Fr wfr 4349
This theorem is referenced by:  epne3  4572  dfwe2  4573
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-fr 4352
  Copyright terms: Public domain W3C validator