MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fr3nr Unicode version

Theorem fr3nr 4508
Description: A well-founded relation has no 3-cycle loops. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 10-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
fr3nr  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  -.  ( B R C  /\  C R D  /\  D R B ) )

Proof of Theorem fr3nr
StepHypRef Expression
1 tpex 4456 . . . . . . 7  |-  { B ,  C ,  D }  e.  _V
21a1i 12 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  { B ,  C ,  D }  e.  _V )
3 simpl 445 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  R  Fr  A )
4 df-tp 3589 . . . . . . 7  |-  { B ,  C ,  D }  =  ( { B ,  C }  u.  { D } )
5 simpr1 966 . . . . . . . . 9  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  B  e.  A )
6 simpr2 967 . . . . . . . . 9  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  C  e.  A )
7 prssi 3712 . . . . . . . . 9  |-  ( ( B  e.  A  /\  C  e.  A )  ->  { B ,  C }  C_  A )
85, 6, 7syl2anc 645 . . . . . . . 8  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  { B ,  C }  C_  A
)
9 simpr3 968 . . . . . . . . 9  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  D  e.  A )
109snssd 3701 . . . . . . . 8  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  { D }  C_  A )
118, 10unssd 3293 . . . . . . 7  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( { B ,  C }  u.  { D } ) 
C_  A )
124, 11syl5eqss 3164 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  { B ,  C ,  D }  C_  A )
13 snsstp1 3707 . . . . . . . 8  |-  { B }  C_  { B ,  C ,  D }
14 snssg 3695 . . . . . . . . 9  |-  ( B  e.  A  ->  ( B  e.  { B ,  C ,  D }  <->  { B }  C_  { B ,  C ,  D }
) )
155, 14syl 17 . . . . . . . 8  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( B  e.  { B ,  C ,  D }  <->  { B }  C_  { B ,  C ,  D }
) )
1613, 15mpbiri 226 . . . . . . 7  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  B  e.  { B ,  C ,  D } )
17 ne0i 3403 . . . . . . 7  |-  ( B  e.  { B ,  C ,  D }  ->  { B ,  C ,  D }  =/=  (/) )
1816, 17syl 17 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  { B ,  C ,  D }  =/=  (/) )
19 fri 4292 . . . . . 6  |-  ( ( ( { B ,  C ,  D }  e.  _V  /\  R  Fr  A )  /\  ( { B ,  C ,  D }  C_  A  /\  { B ,  C ,  D }  =/=  (/) ) )  ->  E. x  e.  { B ,  C ,  D } A. y  e. 
{ B ,  C ,  D }  -.  y R x )
202, 3, 12, 18, 19syl22anc 1188 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  E. x  e.  { B ,  C ,  D } A. y  e.  { B ,  C ,  D }  -.  y R x )
21 breq2 3967 . . . . . . . . 9  |-  ( x  =  B  ->  (
y R x  <->  y R B ) )
2221notbid 287 . . . . . . . 8  |-  ( x  =  B  ->  ( -.  y R x  <->  -.  y R B ) )
2322ralbidv 2534 . . . . . . 7  |-  ( x  =  B  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R x  <->  A. y  e.  { B ,  C ,  D }  -.  y R B ) )
24 breq2 3967 . . . . . . . . 9  |-  ( x  =  C  ->  (
y R x  <->  y R C ) )
2524notbid 287 . . . . . . . 8  |-  ( x  =  C  ->  ( -.  y R x  <->  -.  y R C ) )
2625ralbidv 2534 . . . . . . 7  |-  ( x  =  C  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R x  <->  A. y  e.  { B ,  C ,  D }  -.  y R C ) )
27 breq2 3967 . . . . . . . . 9  |-  ( x  =  D  ->  (
y R x  <->  y R D ) )
2827notbid 287 . . . . . . . 8  |-  ( x  =  D  ->  ( -.  y R x  <->  -.  y R D ) )
2928ralbidv 2534 . . . . . . 7  |-  ( x  =  D  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R x  <->  A. y  e.  { B ,  C ,  D }  -.  y R D ) )
3023, 26, 29rextpg 3626 . . . . . 6  |-  ( ( B  e.  A  /\  C  e.  A  /\  D  e.  A )  ->  ( E. x  e. 
{ B ,  C ,  D } A. y  e.  { B ,  C ,  D }  -.  y R x  <->  ( A. y  e.  { B ,  C ,  D }  -.  y R B  \/  A. y  e.  { B ,  C ,  D }  -.  y R C  \/  A. y  e.  { B ,  C ,  D }  -.  y R D ) ) )
3130adantl 454 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( E. x  e.  { B ,  C ,  D } A. y  e.  { B ,  C ,  D }  -.  y R x  <->  ( A. y  e.  { B ,  C ,  D }  -.  y R B  \/  A. y  e.  { B ,  C ,  D }  -.  y R C  \/  A. y  e.  { B ,  C ,  D }  -.  y R D ) ) )
3220, 31mpbid 203 . . . 4  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R B  \/  A. y  e.  { B ,  C ,  D }  -.  y R C  \/  A. y  e.  { B ,  C ,  D }  -.  y R D ) )
33 snsstp3 3709 . . . . . . 7  |-  { D }  C_  { B ,  C ,  D }
34 snssg 3695 . . . . . . . 8  |-  ( D  e.  A  ->  ( D  e.  { B ,  C ,  D }  <->  { D }  C_  { B ,  C ,  D }
) )
359, 34syl 17 . . . . . . 7  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( D  e.  { B ,  C ,  D }  <->  { D }  C_  { B ,  C ,  D }
) )
3633, 35mpbiri 226 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  D  e.  { B ,  C ,  D } )
37 breq1 3966 . . . . . . . 8  |-  ( y  =  D  ->  (
y R B  <->  D R B ) )
3837notbid 287 . . . . . . 7  |-  ( y  =  D  ->  ( -.  y R B  <->  -.  D R B ) )
3938rcla4v 2831 . . . . . 6  |-  ( D  e.  { B ,  C ,  D }  ->  ( A. y  e. 
{ B ,  C ,  D }  -.  y R B  ->  -.  D R B ) )
4036, 39syl 17 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R B  ->  -.  D R B ) )
41 breq1 3966 . . . . . . . 8  |-  ( y  =  B  ->  (
y R C  <->  B R C ) )
4241notbid 287 . . . . . . 7  |-  ( y  =  B  ->  ( -.  y R C  <->  -.  B R C ) )
4342rcla4v 2831 . . . . . 6  |-  ( B  e.  { B ,  C ,  D }  ->  ( A. y  e. 
{ B ,  C ,  D }  -.  y R C  ->  -.  B R C ) )
4416, 43syl 17 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R C  ->  -.  B R C ) )
45 snsstp2 3708 . . . . . . 7  |-  { C }  C_  { B ,  C ,  D }
46 snssg 3695 . . . . . . . 8  |-  ( C  e.  A  ->  ( C  e.  { B ,  C ,  D }  <->  { C }  C_  { B ,  C ,  D }
) )
476, 46syl 17 . . . . . . 7  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( C  e.  { B ,  C ,  D }  <->  { C }  C_  { B ,  C ,  D }
) )
4845, 47mpbiri 226 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  C  e.  { B ,  C ,  D } )
49 breq1 3966 . . . . . . . 8  |-  ( y  =  C  ->  (
y R D  <->  C R D ) )
5049notbid 287 . . . . . . 7  |-  ( y  =  C  ->  ( -.  y R D  <->  -.  C R D ) )
5150rcla4v 2831 . . . . . 6  |-  ( C  e.  { B ,  C ,  D }  ->  ( A. y  e. 
{ B ,  C ,  D }  -.  y R D  ->  -.  C R D ) )
5248, 51syl 17 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R D  ->  -.  C R D ) )
5340, 44, 523orim123d 1265 . . . 4  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  (
( A. y  e. 
{ B ,  C ,  D }  -.  y R B  \/  A. y  e.  { B ,  C ,  D }  -.  y R C  \/  A. y  e.  { B ,  C ,  D }  -.  y R D )  ->  ( -.  D R B  \/  -.  B R C  \/  -.  C R D ) ) )
5432, 53mpd 16 . . 3  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( -.  D R B  \/  -.  B R C  \/  -.  C R D ) )
55 3ianor 954 . . 3  |-  ( -.  ( D R B  /\  B R C  /\  C R D )  <->  ( -.  D R B  \/  -.  B R C  \/  -.  C R D ) )
5654, 55sylibr 205 . 2  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  -.  ( D R B  /\  B R C  /\  C R D ) )
57 3anrot 944 . 2  |-  ( ( D R B  /\  B R C  /\  C R D )  <->  ( B R C  /\  C R D  /\  D R B ) )
5856, 57sylnib 297 1  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  -.  ( B R C  /\  C R D  /\  D R B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    \/ w3o 938    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   A.wral 2516   E.wrex 2517   _Vcvv 2740    u. cun 3092    C_ wss 3094   (/)c0 3397   {csn 3581   {cpr 3582   {ctp 3583   class class class wbr 3963    Fr wfr 4286
This theorem is referenced by:  epne3  4509  dfwe2  4510
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-br 3964  df-fr 4289
  Copyright terms: Public domain W3C validator