MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frirr Unicode version

Theorem frirr 4370
Description: A well-founded relation is irreflexive. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 2-Jan-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
frirr  |-  ( ( R  Fr  A  /\  B  e.  A )  ->  -.  B R B )

Proof of Theorem frirr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 443 . . 3  |-  ( ( R  Fr  A  /\  B  e.  A )  ->  R  Fr  A )
2 simpr 447 . . . 4  |-  ( ( R  Fr  A  /\  B  e.  A )  ->  B  e.  A )
32snssd 3760 . . 3  |-  ( ( R  Fr  A  /\  B  e.  A )  ->  { B }  C_  A )
4 snnzg 3743 . . . 4  |-  ( B  e.  A  ->  { B }  =/=  (/) )
54adantl 452 . . 3  |-  ( ( R  Fr  A  /\  B  e.  A )  ->  { B }  =/=  (/) )
6 snex 4216 . . . 4  |-  { B }  e.  _V
76frc 4359 . . 3  |-  ( ( R  Fr  A  /\  { B }  C_  A  /\  { B }  =/=  (/) )  ->  E. y  e.  { B }  {
x  e.  { B }  |  x R
y }  =  (/) )
81, 3, 5, 7syl3anc 1182 . 2  |-  ( ( R  Fr  A  /\  B  e.  A )  ->  E. y  e.  { B }  { x  e.  { B }  |  x R y }  =  (/) )
9 rabeq0 3476 . . . . . 6  |-  ( { x  e.  { B }  |  x R
y }  =  (/)  <->  A. x  e.  { B }  -.  x R y )
10 breq2 4027 . . . . . . . 8  |-  ( y  =  B  ->  (
x R y  <->  x R B ) )
1110notbid 285 . . . . . . 7  |-  ( y  =  B  ->  ( -.  x R y  <->  -.  x R B ) )
1211ralbidv 2563 . . . . . 6  |-  ( y  =  B  ->  ( A. x  e.  { B }  -.  x R y  <->  A. x  e.  { B }  -.  x R B ) )
139, 12syl5bb 248 . . . . 5  |-  ( y  =  B  ->  ( { x  e.  { B }  |  x R
y }  =  (/)  <->  A. x  e.  { B }  -.  x R B ) )
1413rexsng 3673 . . . 4  |-  ( B  e.  A  ->  ( E. y  e.  { B }  { x  e.  { B }  |  x R y }  =  (/)  <->  A. x  e.  { B }  -.  x R B ) )
15 breq1 4026 . . . . . 6  |-  ( x  =  B  ->  (
x R B  <->  B R B ) )
1615notbid 285 . . . . 5  |-  ( x  =  B  ->  ( -.  x R B  <->  -.  B R B ) )
1716ralsng 3672 . . . 4  |-  ( B  e.  A  ->  ( A. x  e.  { B }  -.  x R B  <->  -.  B R B ) )
1814, 17bitrd 244 . . 3  |-  ( B  e.  A  ->  ( E. y  e.  { B }  { x  e.  { B }  |  x R y }  =  (/)  <->  -.  B R B ) )
1918adantl 452 . 2  |-  ( ( R  Fr  A  /\  B  e.  A )  ->  ( E. y  e. 
{ B }  {
x  e.  { B }  |  x R
y }  =  (/)  <->  -.  B R B ) )
208, 19mpbid 201 1  |-  ( ( R  Fr  A  /\  B  e.  A )  ->  -.  B R B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   {crab 2547    C_ wss 3152   (/)c0 3455   {csn 3640   class class class wbr 4023    Fr wfr 4349
This theorem is referenced by:  efrirr  4374  dfwe2  4573  efrunt  23470  predfrirr  23609  ifr0  27065  bnj1417  28444
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-fr 4352
  Copyright terms: Public domain W3C validator