Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frrlem5 Unicode version

Theorem frrlem5 24287
Description: Lemma for founded recursion. The values of two acceptable functions agree within their domains. (Contributed by Paul Chapman, 21-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
frrlem5.1  |-  R  Fr  A
frrlem5.2  |-  R Se  A
frrlem5.3  |-  B  =  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x  /\  A. y  e.  x  ( f `  y
)  =  ( y G ( f  |`  Pred ( R ,  A ,  y ) ) ) ) ) }
Assertion
Ref Expression
frrlem5  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( ( x g u  /\  x h v )  ->  u  =  v ) )
Distinct variable groups:    A, f,
g, h, x, y   
f, G, h, x, y, g    u, g, v, x    y, g   
u, h, v    R, f, g, h, x, y    B, g, h, u, v, x
Allowed substitution hints:    A( v, u)    B( y, f)    R( v, u)    G( v, u)

Proof of Theorem frrlem5
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 vex 2793 . . . . . 6  |-  x  e. 
_V
2 vex 2793 . . . . . 6  |-  u  e. 
_V
31, 2breldm 4885 . . . . 5  |-  ( x g u  ->  x  e.  dom  g )
4 vex 2793 . . . . . 6  |-  v  e. 
_V
51, 4breldm 4885 . . . . 5  |-  ( x h v  ->  x  e.  dom  h )
63, 5anim12i 549 . . . 4  |-  ( ( x g u  /\  x h v )  ->  ( x  e. 
dom  g  /\  x  e.  dom  h ) )
7 elin 3360 . . . 4  |-  ( x  e.  ( dom  g  i^i  dom  h )  <->  ( x  e.  dom  g  /\  x  e.  dom  h ) )
86, 7sylibr 203 . . 3  |-  ( ( x g u  /\  x h v )  ->  x  e.  ( dom  g  i^i  dom  h ) )
9 anandir 802 . . . . 5  |-  ( ( ( x g u  /\  x h v )  /\  x  e.  ( dom  g  i^i 
dom  h ) )  <-> 
( ( x g u  /\  x  e.  ( dom  g  i^i 
dom  h ) )  /\  ( x h v  /\  x  e.  ( dom  g  i^i 
dom  h ) ) ) )
102brres 4963 . . . . . 6  |-  ( x ( g  |`  ( dom  g  i^i  dom  h
) ) u  <->  ( x
g u  /\  x  e.  ( dom  g  i^i 
dom  h ) ) )
114brres 4963 . . . . . 6  |-  ( x ( h  |`  ( dom  g  i^i  dom  h
) ) v  <->  ( x h v  /\  x  e.  ( dom  g  i^i 
dom  h ) ) )
1210, 11anbi12i 678 . . . . 5  |-  ( ( x ( g  |`  ( dom  g  i^i  dom  h ) ) u  /\  x ( h  |`  ( dom  g  i^i 
dom  h ) ) v )  <->  ( (
x g u  /\  x  e.  ( dom  g  i^i  dom  h )
)  /\  ( x h v  /\  x  e.  ( dom  g  i^i 
dom  h ) ) ) )
139, 12bitr4i 243 . . . 4  |-  ( ( ( x g u  /\  x h v )  /\  x  e.  ( dom  g  i^i 
dom  h ) )  <-> 
( x ( g  |`  ( dom  g  i^i 
dom  h ) ) u  /\  x ( h  |`  ( dom  g  i^i  dom  h )
) v ) )
1413biimpi 186 . . 3  |-  ( ( ( x g u  /\  x h v )  /\  x  e.  ( dom  g  i^i 
dom  h ) )  ->  ( x ( g  |`  ( dom  g  i^i  dom  h )
) u  /\  x
( h  |`  ( dom  g  i^i  dom  h
) ) v ) )
158, 14mpdan 649 . 2  |-  ( ( x g u  /\  x h v )  ->  ( x ( g  |`  ( dom  g  i^i  dom  h )
) u  /\  x
( h  |`  ( dom  g  i^i  dom  h
) ) v ) )
16 frrlem5.3 . . . . . . . . 9  |-  B  =  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x  /\  A. y  e.  x  ( f `  y
)  =  ( y G ( f  |`  Pred ( R ,  A ,  y ) ) ) ) ) }
1716frrlem3 24285 . . . . . . . 8  |-  ( g  e.  B  ->  dom  g  C_  A )
18 ssinss1 3399 . . . . . . . 8  |-  ( dom  g  C_  A  ->  ( dom  g  i^i  dom  h )  C_  A
)
19 frrlem5.1 . . . . . . . . . 10  |-  R  Fr  A
20 frss 4362 . . . . . . . . . 10  |-  ( ( dom  g  i^i  dom  h )  C_  A  ->  ( R  Fr  A  ->  R  Fr  ( dom  g  i^i  dom  h
) ) )
2119, 20mpi 16 . . . . . . . . 9  |-  ( ( dom  g  i^i  dom  h )  C_  A  ->  R  Fr  ( dom  g  i^i  dom  h
) )
22 frrlem5.2 . . . . . . . . . 10  |-  R Se  A
23 sess2 4364 . . . . . . . . . 10  |-  ( ( dom  g  i^i  dom  h )  C_  A  ->  ( R Se  A  ->  R Se  ( dom  g  i^i 
dom  h ) ) )
2422, 23mpi 16 . . . . . . . . 9  |-  ( ( dom  g  i^i  dom  h )  C_  A  ->  R Se  ( dom  g  i^i  dom  h ) )
2521, 24jca 518 . . . . . . . 8  |-  ( ( dom  g  i^i  dom  h )  C_  A  ->  ( R  Fr  ( dom  g  i^i  dom  h
)  /\  R Se  ( dom  g  i^i  dom  h
) ) )
2617, 18, 253syl 18 . . . . . . 7  |-  ( g  e.  B  ->  ( R  Fr  ( dom  g  i^i  dom  h )  /\  R Se  ( dom  g  i^i  dom  h )
) )
2726adantr 451 . . . . . 6  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( R  Fr  ( dom  g  i^i  dom  h
)  /\  R Se  ( dom  g  i^i  dom  h
) ) )
2816frrlem4 24286 . . . . . 6  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( ( g  |`  ( dom  g  i^i  dom  h ) )  Fn  ( dom  g  i^i 
dom  h )  /\  A. a  e.  ( dom  g  i^i  dom  h
) ( ( g  |`  ( dom  g  i^i 
dom  h ) ) `
 a )  =  ( a G ( ( g  |`  ( dom  g  i^i  dom  h
) )  |`  Pred ( R ,  ( dom  g  i^i  dom  h ) ,  a ) ) ) ) )
2916frrlem4 24286 . . . . . . . 8  |-  ( ( h  e.  B  /\  g  e.  B )  ->  ( ( h  |`  ( dom  h  i^i  dom  g ) )  Fn  ( dom  h  i^i 
dom  g )  /\  A. a  e.  ( dom  h  i^i  dom  g
) ( ( h  |`  ( dom  h  i^i 
dom  g ) ) `
 a )  =  ( a G ( ( h  |`  ( dom  h  i^i  dom  g
) )  |`  Pred ( R ,  ( dom  h  i^i  dom  g ) ,  a ) ) ) ) )
3029ancoms 439 . . . . . . 7  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( ( h  |`  ( dom  h  i^i  dom  g ) )  Fn  ( dom  h  i^i 
dom  g )  /\  A. a  e.  ( dom  h  i^i  dom  g
) ( ( h  |`  ( dom  h  i^i 
dom  g ) ) `
 a )  =  ( a G ( ( h  |`  ( dom  h  i^i  dom  g
) )  |`  Pred ( R ,  ( dom  h  i^i  dom  g ) ,  a ) ) ) ) )
31 incom 3363 . . . . . . . . . . 11  |-  ( dom  g  i^i  dom  h
)  =  ( dom  h  i^i  dom  g
)
3231reseq2i 4954 . . . . . . . . . 10  |-  ( h  |`  ( dom  g  i^i 
dom  h ) )  =  ( h  |`  ( dom  h  i^i  dom  g ) )
3332fneq1i 5340 . . . . . . . . 9  |-  ( ( h  |`  ( dom  g  i^i  dom  h )
)  Fn  ( dom  g  i^i  dom  h
)  <->  ( h  |`  ( dom  h  i^i  dom  g ) )  Fn  ( dom  g  i^i 
dom  h ) )
3431fneq2i 5341 . . . . . . . . 9  |-  ( ( h  |`  ( dom  h  i^i  dom  g )
)  Fn  ( dom  g  i^i  dom  h
)  <->  ( h  |`  ( dom  h  i^i  dom  g ) )  Fn  ( dom  h  i^i 
dom  g ) )
3533, 34bitri 240 . . . . . . . 8  |-  ( ( h  |`  ( dom  g  i^i  dom  h )
)  Fn  ( dom  g  i^i  dom  h
)  <->  ( h  |`  ( dom  h  i^i  dom  g ) )  Fn  ( dom  h  i^i 
dom  g ) )
3631eleq2i 2349 . . . . . . . . . 10  |-  ( a  e.  ( dom  g  i^i  dom  h )  <->  a  e.  ( dom  h  i^i  dom  g ) )
3732fveq1i 5528 . . . . . . . . . . 11  |-  ( ( h  |`  ( dom  g  i^i  dom  h )
) `  a )  =  ( ( h  |`  ( dom  h  i^i 
dom  g ) ) `
 a )
38 predeq2 24172 . . . . . . . . . . . . . 14  |-  ( ( dom  g  i^i  dom  h )  =  ( dom  h  i^i  dom  g )  ->  Pred ( R ,  ( dom  g  i^i  dom  h ) ,  a )  = 
Pred ( R , 
( dom  h  i^i  dom  g ) ,  a ) )
3931, 38ax-mp 8 . . . . . . . . . . . . 13  |-  Pred ( R ,  ( dom  g  i^i  dom  h ) ,  a )  = 
Pred ( R , 
( dom  h  i^i  dom  g ) ,  a )
4032, 39reseq12i 4955 . . . . . . . . . . . 12  |-  ( ( h  |`  ( dom  g  i^i  dom  h )
)  |`  Pred ( R , 
( dom  g  i^i  dom  h ) ,  a ) )  =  ( ( h  |`  ( dom  h  i^i  dom  g
) )  |`  Pred ( R ,  ( dom  h  i^i  dom  g ) ,  a ) )
4140oveq2i 5871 . . . . . . . . . . 11  |-  ( a G ( ( h  |`  ( dom  g  i^i 
dom  h ) )  |`  Pred ( R , 
( dom  g  i^i  dom  h ) ,  a ) ) )  =  ( a G ( ( h  |`  ( dom  h  i^i  dom  g
) )  |`  Pred ( R ,  ( dom  h  i^i  dom  g ) ,  a ) ) )
4237, 41eqeq12i 2298 . . . . . . . . . 10  |-  ( ( ( h  |`  ( dom  g  i^i  dom  h
) ) `  a
)  =  ( a G ( ( h  |`  ( dom  g  i^i 
dom  h ) )  |`  Pred ( R , 
( dom  g  i^i  dom  h ) ,  a ) ) )  <->  ( (
h  |`  ( dom  h  i^i  dom  g ) ) `
 a )  =  ( a G ( ( h  |`  ( dom  h  i^i  dom  g
) )  |`  Pred ( R ,  ( dom  h  i^i  dom  g ) ,  a ) ) ) )
4336, 42imbi12i 316 . . . . . . . . 9  |-  ( ( a  e.  ( dom  g  i^i  dom  h
)  ->  ( (
h  |`  ( dom  g  i^i  dom  h ) ) `
 a )  =  ( a G ( ( h  |`  ( dom  g  i^i  dom  h
) )  |`  Pred ( R ,  ( dom  g  i^i  dom  h ) ,  a ) ) ) )  <->  ( a  e.  ( dom  h  i^i 
dom  g )  -> 
( ( h  |`  ( dom  h  i^i  dom  g ) ) `  a )  =  ( a G ( ( h  |`  ( dom  h  i^i  dom  g )
)  |`  Pred ( R , 
( dom  h  i^i  dom  g ) ,  a ) ) ) ) )
4443ralbii2 2573 . . . . . . . 8  |-  ( A. a  e.  ( dom  g  i^i  dom  h )
( ( h  |`  ( dom  g  i^i  dom  h ) ) `  a )  =  ( a G ( ( h  |`  ( dom  g  i^i  dom  h )
)  |`  Pred ( R , 
( dom  g  i^i  dom  h ) ,  a ) ) )  <->  A. a  e.  ( dom  h  i^i 
dom  g ) ( ( h  |`  ( dom  h  i^i  dom  g
) ) `  a
)  =  ( a G ( ( h  |`  ( dom  h  i^i 
dom  g ) )  |`  Pred ( R , 
( dom  h  i^i  dom  g ) ,  a ) ) ) )
4535, 44anbi12i 678 . . . . . . 7  |-  ( ( ( h  |`  ( dom  g  i^i  dom  h
) )  Fn  ( dom  g  i^i  dom  h
)  /\  A. a  e.  ( dom  g  i^i 
dom  h ) ( ( h  |`  ( dom  g  i^i  dom  h
) ) `  a
)  =  ( a G ( ( h  |`  ( dom  g  i^i 
dom  h ) )  |`  Pred ( R , 
( dom  g  i^i  dom  h ) ,  a ) ) ) )  <-> 
( ( h  |`  ( dom  h  i^i  dom  g ) )  Fn  ( dom  h  i^i 
dom  g )  /\  A. a  e.  ( dom  h  i^i  dom  g
) ( ( h  |`  ( dom  h  i^i 
dom  g ) ) `
 a )  =  ( a G ( ( h  |`  ( dom  h  i^i  dom  g
) )  |`  Pred ( R ,  ( dom  h  i^i  dom  g ) ,  a ) ) ) ) )
4630, 45sylibr 203 . . . . . 6  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( ( h  |`  ( dom  g  i^i  dom  h ) )  Fn  ( dom  g  i^i 
dom  h )  /\  A. a  e.  ( dom  g  i^i  dom  h
) ( ( h  |`  ( dom  g  i^i 
dom  h ) ) `
 a )  =  ( a G ( ( h  |`  ( dom  g  i^i  dom  h
) )  |`  Pred ( R ,  ( dom  g  i^i  dom  h ) ,  a ) ) ) ) )
47 frr3g 24282 . . . . . 6  |-  ( ( ( R  Fr  ( dom  g  i^i  dom  h
)  /\  R Se  ( dom  g  i^i  dom  h
) )  /\  (
( g  |`  ( dom  g  i^i  dom  h
) )  Fn  ( dom  g  i^i  dom  h
)  /\  A. a  e.  ( dom  g  i^i 
dom  h ) ( ( g  |`  ( dom  g  i^i  dom  h
) ) `  a
)  =  ( a G ( ( g  |`  ( dom  g  i^i 
dom  h ) )  |`  Pred ( R , 
( dom  g  i^i  dom  h ) ,  a ) ) ) )  /\  ( ( h  |`  ( dom  g  i^i 
dom  h ) )  Fn  ( dom  g  i^i  dom  h )  /\  A. a  e.  ( dom  g  i^i  dom  h
) ( ( h  |`  ( dom  g  i^i 
dom  h ) ) `
 a )  =  ( a G ( ( h  |`  ( dom  g  i^i  dom  h
) )  |`  Pred ( R ,  ( dom  g  i^i  dom  h ) ,  a ) ) ) ) )  -> 
( g  |`  ( dom  g  i^i  dom  h
) )  =  ( h  |`  ( dom  g  i^i  dom  h )
) )
4827, 28, 46, 47syl3anc 1182 . . . . 5  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( g  |`  ( dom  g  i^i  dom  h
) )  =  ( h  |`  ( dom  g  i^i  dom  h )
) )
4948breqd 4036 . . . 4  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( x ( g  |`  ( dom  g  i^i 
dom  h ) ) v  <->  x ( h  |`  ( dom  g  i^i 
dom  h ) ) v ) )
5049biimprd 214 . . 3  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( x ( h  |`  ( dom  g  i^i 
dom  h ) ) v  ->  x (
g  |`  ( dom  g  i^i  dom  h ) ) v ) )
5116frrlem2 24284 . . . . 5  |-  ( g  e.  B  ->  Fun  g )
52 funres 5295 . . . . 5  |-  ( Fun  g  ->  Fun  ( g  |`  ( dom  g  i^i 
dom  h ) ) )
53 dffun2 5267 . . . . . . 7  |-  ( Fun  ( g  |`  ( dom  g  i^i  dom  h
) )  <->  ( Rel  ( g  |`  ( dom  g  i^i  dom  h
) )  /\  A. x A. u A. v
( ( x ( g  |`  ( dom  g  i^i  dom  h )
) u  /\  x
( g  |`  ( dom  g  i^i  dom  h
) ) v )  ->  u  =  v ) ) )
5453simprbi 450 . . . . . 6  |-  ( Fun  ( g  |`  ( dom  g  i^i  dom  h
) )  ->  A. x A. u A. v ( ( x ( g  |`  ( dom  g  i^i 
dom  h ) ) u  /\  x ( g  |`  ( dom  g  i^i  dom  h )
) v )  ->  u  =  v )
)
55 sp 1718 . . . . . . . 8  |-  ( A. v ( ( x ( g  |`  ( dom  g  i^i  dom  h
) ) u  /\  x ( g  |`  ( dom  g  i^i  dom  h ) ) v )  ->  u  =  v )  ->  (
( x ( g  |`  ( dom  g  i^i 
dom  h ) ) u  /\  x ( g  |`  ( dom  g  i^i  dom  h )
) v )  ->  u  =  v )
)
5655sps 1741 . . . . . . 7  |-  ( A. u A. v ( ( x ( g  |`  ( dom  g  i^i  dom  h ) ) u  /\  x ( g  |`  ( dom  g  i^i 
dom  h ) ) v )  ->  u  =  v )  -> 
( ( x ( g  |`  ( dom  g  i^i  dom  h )
) u  /\  x
( g  |`  ( dom  g  i^i  dom  h
) ) v )  ->  u  =  v ) )
5756sps 1741 . . . . . 6  |-  ( A. x A. u A. v
( ( x ( g  |`  ( dom  g  i^i  dom  h )
) u  /\  x
( g  |`  ( dom  g  i^i  dom  h
) ) v )  ->  u  =  v )  ->  ( (
x ( g  |`  ( dom  g  i^i  dom  h ) ) u  /\  x ( g  |`  ( dom  g  i^i 
dom  h ) ) v )  ->  u  =  v ) )
5854, 57syl 15 . . . . 5  |-  ( Fun  ( g  |`  ( dom  g  i^i  dom  h
) )  ->  (
( x ( g  |`  ( dom  g  i^i 
dom  h ) ) u  /\  x ( g  |`  ( dom  g  i^i  dom  h )
) v )  ->  u  =  v )
)
5951, 52, 583syl 18 . . . 4  |-  ( g  e.  B  ->  (
( x ( g  |`  ( dom  g  i^i 
dom  h ) ) u  /\  x ( g  |`  ( dom  g  i^i  dom  h )
) v )  ->  u  =  v )
)
6059adantr 451 . . 3  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( ( x ( g  |`  ( dom  g  i^i  dom  h )
) u  /\  x
( g  |`  ( dom  g  i^i  dom  h
) ) v )  ->  u  =  v ) )
6150, 60sylan2d 468 . 2  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( ( x ( g  |`  ( dom  g  i^i  dom  h )
) u  /\  x
( h  |`  ( dom  g  i^i  dom  h
) ) v )  ->  u  =  v ) )
6215, 61syl5 28 1  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( ( x g u  /\  x h v )  ->  u  =  v ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   A.wal 1529   E.wex 1530    = wceq 1625    e. wcel 1686   {cab 2271   A.wral 2545    i^i cin 3153    C_ wss 3154   class class class wbr 4025    Fr wfr 4351   Se wse 4352   dom cdm 4691    |` cres 4693   Rel wrel 4696   Fun wfun 5251    Fn wfn 5252   ` cfv 5257  (class class class)co 5860   Predcpred 24169
This theorem is referenced by:  frrlem5c  24289
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-recs 6390  df-rdg 6425  df-pred 24170  df-trpred 24223
  Copyright terms: Public domain W3C validator