MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frss Unicode version

Theorem frss 4490
Description: Subset theorem for the well-founded predicate. Exercise 1 of [TakeutiZaring] p. 31. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
frss  |-  ( A 
C_  B  ->  ( R  Fr  B  ->  R  Fr  A ) )

Proof of Theorem frss
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstr2 3298 . . . . . 6  |-  ( x 
C_  A  ->  ( A  C_  B  ->  x  C_  B ) )
21com12 29 . . . . 5  |-  ( A 
C_  B  ->  (
x  C_  A  ->  x 
C_  B ) )
32anim1d 548 . . . 4  |-  ( A 
C_  B  ->  (
( x  C_  A  /\  x  =/=  (/) )  -> 
( x  C_  B  /\  x  =/=  (/) ) ) )
43imim1d 71 . . 3  |-  ( A 
C_  B  ->  (
( ( x  C_  B  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y )  ->  ( ( x 
C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y ) ) )
54alimdv 1628 . 2  |-  ( A 
C_  B  ->  ( A. x ( ( x 
C_  B  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y )  ->  A. x ( ( x 
C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y ) ) )
6 df-fr 4482 . 2  |-  ( R  Fr  B  <->  A. x
( ( x  C_  B  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y ) )
7 df-fr 4482 . 2  |-  ( R  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y ) )
85, 6, 73imtr4g 262 1  |-  ( A 
C_  B  ->  ( R  Fr  B  ->  R  Fr  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359   A.wal 1546    =/= wne 2550   A.wral 2649   E.wrex 2650    C_ wss 3263   (/)c0 3571   class class class wbr 4153    Fr wfr 4479
This theorem is referenced by:  freq2  4494  wess  4510  frmin  25266  frrlem5  25309
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-in 3270  df-ss 3277  df-fr 4482
  Copyright terms: Public domain W3C validator