MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frsuc Unicode version

Theorem frsuc 6632
Description: The successor value resulting from finite recursive definition generation. (Contributed by NM, 15-Oct-1996.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
frsuc  |-  ( B  e.  om  ->  (
( rec ( F ,  A )  |`  om ) `  suc  B
)  =  ( F `
 ( ( rec ( F ,  A
)  |`  om ) `  B ) ) )

Proof of Theorem frsuc
StepHypRef Expression
1 rdgdmlim 6613 . . . . 5  |-  Lim  dom  rec ( F ,  A
)
2 limomss 4792 . . . . 5  |-  ( Lim 
dom  rec ( F ,  A )  ->  om  C_  dom  rec ( F ,  A
) )
31, 2ax-mp 8 . . . 4  |-  om  C_  dom  rec ( F ,  A
)
43sseli 3289 . . 3  |-  ( B  e.  om  ->  B  e.  dom  rec ( F ,  A ) )
5 rdgsucg 6619 . . 3  |-  ( B  e.  dom  rec ( F ,  A )  ->  ( rec ( F ,  A ) `  suc  B )  =  ( F `  ( rec ( F ,  A
) `  B )
) )
64, 5syl 16 . 2  |-  ( B  e.  om  ->  ( rec ( F ,  A
) `  suc  B )  =  ( F `  ( rec ( F ,  A ) `  B
) ) )
7 peano2b 4803 . . 3  |-  ( B  e.  om  <->  suc  B  e. 
om )
8 fvres 5687 . . 3  |-  ( suc 
B  e.  om  ->  ( ( rec ( F ,  A )  |`  om ) `  suc  B
)  =  ( rec ( F ,  A
) `  suc  B ) )
97, 8sylbi 188 . 2  |-  ( B  e.  om  ->  (
( rec ( F ,  A )  |`  om ) `  suc  B
)  =  ( rec ( F ,  A
) `  suc  B ) )
10 fvres 5687 . . 3  |-  ( B  e.  om  ->  (
( rec ( F ,  A )  |`  om ) `  B )  =  ( rec ( F ,  A ) `  B ) )
1110fveq2d 5674 . 2  |-  ( B  e.  om  ->  ( F `  ( ( rec ( F ,  A
)  |`  om ) `  B ) )  =  ( F `  ( rec ( F ,  A
) `  B )
) )
126, 9, 113eqtr4d 2431 1  |-  ( B  e.  om  ->  (
( rec ( F ,  A )  |`  om ) `  suc  B
)  =  ( F `
 ( ( rec ( F ,  A
)  |`  om ) `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1717    C_ wss 3265   Lim wlim 4525   suc csuc 4526   omcom 4787   dom cdm 4820    |` cres 4822   ` cfv 5396   reccrdg 6605
This theorem is referenced by:  frsucmpt  6633  frsucmptn  6634  seqomlem1  6645  seqomlem4  6648  onasuc  6710  onmsuc  6711  onesuc  6712  inf3lemc  7516  alephfplem2  7921  ackbij2lem2  8055  infpssrlem2  8119  fin23lem34  8161  fin23lem35  8162  itunisuc  8234  om2uzrdg  11225  uzrdgsuci  11229
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-recs 6571  df-rdg 6606
  Copyright terms: Public domain W3C validator