MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frsuc Unicode version

Theorem frsuc 6403
Description: The successor value resulting from finite recursive definition generation. (Contributed by NM, 15-Oct-1996.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
frsuc  |-  ( B  e.  om  ->  (
( rec ( F ,  A )  |`  om ) `  suc  B
)  =  ( F `
 ( ( rec ( F ,  A
)  |`  om ) `  B ) ) )

Proof of Theorem frsuc
StepHypRef Expression
1 rdgdmlim 6384 . . . . 5  |-  Lim  dom  rec ( F ,  A
)
2 limomss 4619 . . . . 5  |-  ( Lim 
dom  rec ( F ,  A )  ->  om  C_  dom  rec ( F ,  A
) )
31, 2ax-mp 10 . . . 4  |-  om  C_  dom  rec ( F ,  A
)
43sseli 3137 . . 3  |-  ( B  e.  om  ->  B  e.  dom  rec ( F ,  A ) )
5 rdgsucg 6390 . . 3  |-  ( B  e.  dom  rec ( F ,  A )  ->  ( rec ( F ,  A ) `  suc  B )  =  ( F `  ( rec ( F ,  A
) `  B )
) )
64, 5syl 17 . 2  |-  ( B  e.  om  ->  ( rec ( F ,  A
) `  suc  B )  =  ( F `  ( rec ( F ,  A ) `  B
) ) )
7 peano2b 4630 . . 3  |-  ( B  e.  om  <->  suc  B  e. 
om )
8 fvres 5461 . . 3  |-  ( suc 
B  e.  om  ->  ( ( rec ( F ,  A )  |`  om ) `  suc  B
)  =  ( rec ( F ,  A
) `  suc  B ) )
97, 8sylbi 189 . 2  |-  ( B  e.  om  ->  (
( rec ( F ,  A )  |`  om ) `  suc  B
)  =  ( rec ( F ,  A
) `  suc  B ) )
10 fvres 5461 . . 3  |-  ( B  e.  om  ->  (
( rec ( F ,  A )  |`  om ) `  B )  =  ( rec ( F ,  A ) `  B ) )
1110fveq2d 5448 . 2  |-  ( B  e.  om  ->  ( F `  ( ( rec ( F ,  A
)  |`  om ) `  B ) )  =  ( F `  ( rec ( F ,  A
) `  B )
) )
126, 9, 113eqtr4d 2298 1  |-  ( B  e.  om  ->  (
( rec ( F ,  A )  |`  om ) `  suc  B
)  =  ( F `
 ( ( rec ( F ,  A
)  |`  om ) `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621    C_ wss 3113   Lim wlim 4351   suc csuc 4352   omcom 4614   dom cdm 4647    |` cres 4649   ` cfv 4659   reccrdg 6376
This theorem is referenced by:  frsucmpt  6404  frsucmptn  6405  seqomlem1  6416  seqomlem4  6419  onasuc  6481  onmsuc  6482  onesuc  6483  inf3lemc  7281  alephfplem2  7686  ackbij2lem2  7820  infpssrlem2  7884  fin23lem34  7926  fin23lem35  7927  itunisuc  7999  om2uzrdg  10971  uzrdgsuci  10975
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-reu 2523  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-recs 6342  df-rdg 6377
  Copyright terms: Public domain W3C validator