MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frsuc Unicode version

Theorem frsuc 6382
Description: The successor value resulting from finite recursive definition generation. (Contributed by NM, 15-Oct-1996.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
frsuc  |-  ( B  e.  om  ->  (
( rec ( F ,  A )  |`  om ) `  suc  B
)  =  ( F `
 ( ( rec ( F ,  A
)  |`  om ) `  B ) ) )

Proof of Theorem frsuc
StepHypRef Expression
1 rdgdmlim 6363 . . . . 5  |-  Lim  dom  rec ( F ,  A
)
2 limomss 4598 . . . . 5  |-  ( Lim 
dom  rec ( F ,  A )  ->  om  C_  dom  rec ( F ,  A
) )
31, 2ax-mp 10 . . . 4  |-  om  C_  dom  rec ( F ,  A
)
43sseli 3118 . . 3  |-  ( B  e.  om  ->  B  e.  dom  rec ( F ,  A ) )
5 rdgsucg 6369 . . 3  |-  ( B  e.  dom  rec ( F ,  A )  ->  ( rec ( F ,  A ) `  suc  B )  =  ( F `  ( rec ( F ,  A
) `  B )
) )
64, 5syl 17 . 2  |-  ( B  e.  om  ->  ( rec ( F ,  A
) `  suc  B )  =  ( F `  ( rec ( F ,  A ) `  B
) ) )
7 peano2b 4609 . . 3  |-  ( B  e.  om  <->  suc  B  e. 
om )
8 fvres 5440 . . 3  |-  ( suc 
B  e.  om  ->  ( ( rec ( F ,  A )  |`  om ) `  suc  B
)  =  ( rec ( F ,  A
) `  suc  B ) )
97, 8sylbi 189 . 2  |-  ( B  e.  om  ->  (
( rec ( F ,  A )  |`  om ) `  suc  B
)  =  ( rec ( F ,  A
) `  suc  B ) )
10 fvres 5440 . . 3  |-  ( B  e.  om  ->  (
( rec ( F ,  A )  |`  om ) `  B )  =  ( rec ( F ,  A ) `  B ) )
1110fveq2d 5427 . 2  |-  ( B  e.  om  ->  ( F `  ( ( rec ( F ,  A
)  |`  om ) `  B ) )  =  ( F `  ( rec ( F ,  A
) `  B )
) )
126, 9, 113eqtr4d 2298 1  |-  ( B  e.  om  ->  (
( rec ( F ,  A )  |`  om ) `  suc  B
)  =  ( F `
 ( ( rec ( F ,  A
)  |`  om ) `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621    C_ wss 3094   Lim wlim 4330   suc csuc 4331   omcom 4593   dom cdm 4626    |` cres 4628   ` cfv 4638   reccrdg 6355
This theorem is referenced by:  frsucmpt  6383  frsucmptn  6384  seqomlem1  6395  seqomlem4  6398  onasuc  6460  onmsuc  6461  onesuc  6462  inf3lemc  7260  alephfplem2  7665  ackbij2lem2  7799  infpssrlem2  7863  fin23lem34  7905  fin23lem35  7906  itunisuc  7978  om2uzrdg  10950  uzrdgsuci  10954
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-recs 6321  df-rdg 6356
  Copyright terms: Public domain W3C validator