Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fscgr Unicode version

Theorem fscgr 23877
Description: Congruence law for the general five segment configuration. Theorem 4.16 of [Schwabhauser] p. 37. (Contributed by Scott Fenton, 5-Oct-2013.)
Assertion
Ref Expression
fscgr  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. <. A ,  B >. ,  <. C ,  D >. >.  FiveSeg  <. <. E ,  F >. ,  <. G ,  H >. >.  /\  A  =/=  B )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )

Proof of Theorem fscgr
StepHypRef Expression
1 brfs 23876 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. <. A ,  B >. ,  <. C ,  D >. >.  FiveSeg  <. <. E ,  F >. ,  <. G ,  H >. >. 
<->  ( A  Colinear  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) ) ) )
21anbi1d 688 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. <. A ,  B >. ,  <. C ,  D >. >.  FiveSeg  <. <. E ,  F >. ,  <. G ,  H >. >.  /\  A  =/=  B )  <->  ( ( A 
Colinear 
<. B ,  C >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. ) )  /\  A  =/= 
B ) ) )
3 simp11 990 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  N  e.  NN )
4 simp12 991 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
5 simp13 992 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
6 simp21 993 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
7 brcolinear 23856 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( A  Colinear  <. B ,  C >. 
<->  ( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) )
83, 4, 5, 6, 7syl13anc 1189 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( A  Colinear  <. B ,  C >.  <-> 
( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) )
9 simp23 995 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  E  e.  ( EE `  N
) )
10 simp31 996 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  F  e.  ( EE `  N
) )
11 simp32 997 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  G  e.  ( EE `  N
) )
12 cgr3permute2 23846 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N
)  /\  G  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  <->  <. B ,  <. A ,  C >. >.Cgr3 <. F ,  <. E ,  G >. >. ) )
133, 4, 5, 6, 9, 10, 11, 12syl133anc 1210 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  <->  <. B ,  <. A ,  C >. >.Cgr3 <. F ,  <. E ,  G >. >. ) )
14 ancom 439 . . . . . . . . . . . . 13  |-  ( (
<. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. )  <-> 
( <. B ,  D >.Cgr
<. F ,  H >.  /\ 
<. A ,  D >.Cgr <. E ,  H >. ) )
1514a1i 12 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. A ,  D >.Cgr
<. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. )  <-> 
( <. B ,  D >.Cgr
<. F ,  H >.  /\ 
<. A ,  D >.Cgr <. E ,  H >. ) ) )
1613, 153anbi23d 1260 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( A  Btwn  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  <->  ( A  Btwn  <. B ,  C >.  /\  <. B ,  <. A ,  C >. >.Cgr3 <. F ,  <. E ,  G >. >.  /\  ( <. B ,  D >.Cgr
<. F ,  H >.  /\ 
<. A ,  D >.Cgr <. E ,  H >. ) ) ) )
17 simp22 994 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N
) )
18 simp33 998 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  H  e.  ( EE `  N
) )
19 brofs2 23874 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  B  e.  ( EE
`  N )  /\  A  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. <. B ,  A >. ,  <. C ,  D >. >. 
OuterFiveSeg  <. <. F ,  E >. ,  <. G ,  H >. >. 
<->  ( A  Btwn  <. B ,  C >.  /\  <. B ,  <. A ,  C >. >.Cgr3 <. F ,  <. E ,  G >. >.  /\  ( <. B ,  D >.Cgr <. F ,  H >.  /\  <. A ,  D >.Cgr <. E ,  H >. ) ) ) )
203, 5, 4, 6, 17, 10, 9, 11, 18, 19syl333anc 1219 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. <. B ,  A >. ,  <. C ,  D >. >. 
OuterFiveSeg  <. <. F ,  E >. ,  <. G ,  H >. >. 
<->  ( A  Btwn  <. B ,  C >.  /\  <. B ,  <. A ,  C >. >.Cgr3 <. F ,  <. E ,  G >. >.  /\  ( <. B ,  D >.Cgr <. F ,  H >.  /\  <. A ,  D >.Cgr <. E ,  H >. ) ) ) )
2116, 20bitr4d 249 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( A  Btwn  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  <->  <. <. B ,  A >. ,  <. C ,  D >. >. 
OuterFiveSeg  <. <. F ,  E >. ,  <. G ,  H >. >. ) )
22 necom 2493 . . . . . . . . . . 11  |-  ( A  =/=  B  <->  B  =/=  A )
2322a1i 12 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( A  =/=  B  <->  B  =/=  A ) )
2421, 23anbi12d 694 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( ( A  Btwn  <. B ,  C >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. ) )  /\  A  =/= 
B )  <->  ( <. <. B ,  A >. , 
<. C ,  D >. >.  OuterFiveSeg  <. <. F ,  E >. , 
<. G ,  H >. >.  /\  B  =/=  A
) ) )
25 5segofs 23803 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  B  e.  ( EE
`  N )  /\  A  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. <. B ,  A >. ,  <. C ,  D >. >. 
OuterFiveSeg  <. <. F ,  E >. ,  <. G ,  H >. >.  /\  B  =/=  A )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
263, 5, 4, 6, 17, 10, 9, 11, 18, 25syl333anc 1219 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. <. B ,  A >. ,  <. C ,  D >. >. 
OuterFiveSeg  <. <. F ,  E >. ,  <. G ,  H >. >.  /\  B  =/=  A )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
2724, 26sylbid 208 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( ( A  Btwn  <. B ,  C >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. ) )  /\  A  =/= 
B )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
2827exp3a 427 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( A  Btwn  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  ->  ( A  =/=  B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) )
29283expd 1173 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( A  Btwn  <. B ,  C >.  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  ->  ( ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. )  ->  ( A  =/= 
B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) ) ) )
30 btwncom 23811 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. C ,  A >. 
<->  B  Btwn  <. A ,  C >. ) )
313, 5, 6, 4, 30syl13anc 1189 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( B  Btwn  <. C ,  A >.  <-> 
B  Btwn  <. A ,  C >. ) )
32313anbi1d 1261 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. C ,  A >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  <->  ( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr
<. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. ) ) ) )
33 brofs2 23874 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. <. A ,  B >. ,  <. C ,  D >. >. 
OuterFiveSeg  <. <. E ,  F >. ,  <. G ,  H >. >. 
<->  ( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) ) ) )
3432, 33bitr4d 249 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. C ,  A >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  <->  <. <. A ,  B >. ,  <. C ,  D >. >. 
OuterFiveSeg  <. <. E ,  F >. ,  <. G ,  H >. >. ) )
3534anbi1d 688 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( ( B  Btwn  <. C ,  A >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. ) )  /\  A  =/= 
B )  <->  ( <. <. A ,  B >. , 
<. C ,  D >. >.  OuterFiveSeg  <. <. E ,  F >. , 
<. G ,  H >. >.  /\  A  =/=  B
) ) )
36 5segofs 23803 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. <. A ,  B >. ,  <. C ,  D >. >. 
OuterFiveSeg  <. <. E ,  F >. ,  <. G ,  H >. >.  /\  A  =/=  B )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
3735, 36sylbid 208 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( ( B  Btwn  <. C ,  A >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. ) )  /\  A  =/= 
B )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
3837exp3a 427 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. C ,  A >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  ->  ( A  =/=  B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) )
39383expd 1173 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( B  Btwn  <. C ,  A >.  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  ->  ( ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. )  ->  ( A  =/= 
B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) ) ) )
40 cgr3permute1 23845 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N
)  /\  G  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  <->  <. A ,  <. C ,  B >. >.Cgr3 <. E ,  <. G ,  F >. >. ) )
413, 4, 5, 6, 9, 10, 11, 40syl133anc 1210 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  <->  <. A ,  <. C ,  B >. >.Cgr3 <. E ,  <. G ,  F >. >. ) )
42413anbi2d 1262 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( C  Btwn  <. A ,  B >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  <->  ( C  Btwn  <. A ,  B >.  /\  <. A ,  <. C ,  B >. >.Cgr3 <. E ,  <. G ,  F >. >.  /\  ( <. A ,  D >.Cgr
<. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. ) ) ) )
43 brifs2 23875 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  C  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( G  e.  ( EE `  N )  /\  F  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. <. A ,  C >. ,  <. B ,  D >. >. 
InnerFiveSeg  <. <. E ,  G >. ,  <. F ,  H >. >. 
<->  ( C  Btwn  <. A ,  B >.  /\  <. A ,  <. C ,  B >. >.Cgr3 <. E ,  <. G ,  F >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) ) ) )
443, 4, 6, 5, 17, 9, 11, 10, 18, 43syl333anc 1219 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. <. A ,  C >. ,  <. B ,  D >. >. 
InnerFiveSeg  <. <. E ,  G >. ,  <. F ,  H >. >. 
<->  ( C  Btwn  <. A ,  B >.  /\  <. A ,  <. C ,  B >. >.Cgr3 <. E ,  <. G ,  F >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) ) ) )
4542, 44bitr4d 249 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( C  Btwn  <. A ,  B >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  <->  <. <. A ,  C >. ,  <. B ,  D >. >. 
InnerFiveSeg  <. <. E ,  G >. ,  <. F ,  H >. >. ) )
46 ifscgr 23841 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  C  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( G  e.  ( EE `  N )  /\  F  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. <. A ,  C >. ,  <. B ,  D >. >. 
InnerFiveSeg  <. <. E ,  G >. ,  <. F ,  H >. >.  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
473, 4, 6, 5, 17, 9, 11, 10, 18, 46syl333anc 1219 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. <. A ,  C >. ,  <. B ,  D >. >. 
InnerFiveSeg  <. <. E ,  G >. ,  <. F ,  H >. >.  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
4845, 47sylbid 208 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( C  Btwn  <. A ,  B >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
4948a1dd 44 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( C  Btwn  <. A ,  B >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  ->  ( A  =/=  B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) )
50493expd 1173 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( C  Btwn  <. A ,  B >.  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  ->  ( ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. )  ->  ( A  =/= 
B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) ) ) )
5129, 39, 503jaod 1251 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  ->  (
( <. A ,  D >.Cgr
<. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. )  ->  ( A  =/= 
B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) ) ) )
528, 51sylbid 208 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( A  Colinear  <. B ,  C >.  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  ->  ( ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. )  ->  ( A  =/= 
B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) ) ) )
53523impd 1170 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( A  Colinear  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  ->  ( A  =/=  B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) )
5453imp3a 422 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( ( A  Colinear  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. ) )  /\  A  =/= 
B )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
552, 54sylbid 208 1  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. <. A ,  B >. ,  <. C ,  D >. >.  FiveSeg  <. <. E ,  F >. ,  <. G ,  H >. >.  /\  A  =/=  B )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    \/ w3o 938    /\ w3a 939    e. wcel 1621    =/= wne 2412   <.cop 3547   class class class wbr 3920   ` cfv 4592   NNcn 9626   EEcee 23690    Btwn cbtwn 23691  Cgrccgr 23692    OuterFiveSeg cofs 23779    InnerFiveSeg cifs 23832  Cgr3ccgr3 23833    Colinear ccolin 23834    FiveSeg cfs 23835
This theorem is referenced by:  linecgr  23878
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-sup 7078  df-oi 7109  df-card 7456  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-seq 10925  df-exp 10983  df-hash 11216  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-clim 11839  df-sum 12036  df-ee 23693  df-btwn 23694  df-cgr 23695  df-ofs 23780  df-ifs 23836  df-cgr3 23837  df-colinear 23838  df-fs 23839
  Copyright terms: Public domain W3C validator