Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fscgr Unicode version

Theorem fscgr 24113
Description: Congruence law for the general five segment configuration. Theorem 4.16 of [Schwabhauser] p. 37. (Contributed by Scott Fenton, 5-Oct-2013.)
Assertion
Ref Expression
fscgr  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. <. A ,  B >. ,  <. C ,  D >. >.  FiveSeg  <. <. E ,  F >. ,  <. G ,  H >. >.  /\  A  =/=  B )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )

Proof of Theorem fscgr
StepHypRef Expression
1 brfs 24112 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. <. A ,  B >. ,  <. C ,  D >. >.  FiveSeg  <. <. E ,  F >. ,  <. G ,  H >. >. 
<->  ( A  Colinear  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) ) ) )
21anbi1d 685 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. <. A ,  B >. ,  <. C ,  D >. >.  FiveSeg  <. <. E ,  F >. ,  <. G ,  H >. >.  /\  A  =/=  B )  <->  ( ( A 
Colinear 
<. B ,  C >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. ) )  /\  A  =/= 
B ) ) )
3 simp11 985 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  N  e.  NN )
4 simp12 986 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
5 simp13 987 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
6 simp21 988 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
7 brcolinear 24092 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( A  Colinear  <. B ,  C >. 
<->  ( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) )
83, 4, 5, 6, 7syl13anc 1184 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( A  Colinear  <. B ,  C >.  <-> 
( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) )
9 simp23 990 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  E  e.  ( EE `  N
) )
10 simp31 991 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  F  e.  ( EE `  N
) )
11 simp32 992 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  G  e.  ( EE `  N
) )
12 cgr3permute2 24082 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N
)  /\  G  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  <->  <. B ,  <. A ,  C >. >.Cgr3 <. F ,  <. E ,  G >. >. ) )
133, 4, 5, 6, 9, 10, 11, 12syl133anc 1205 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  <->  <. B ,  <. A ,  C >. >.Cgr3 <. F ,  <. E ,  G >. >. ) )
14 ancom 437 . . . . . . . . . . . . 13  |-  ( (
<. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. )  <-> 
( <. B ,  D >.Cgr
<. F ,  H >.  /\ 
<. A ,  D >.Cgr <. E ,  H >. ) )
1514a1i 10 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. A ,  D >.Cgr
<. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. )  <-> 
( <. B ,  D >.Cgr
<. F ,  H >.  /\ 
<. A ,  D >.Cgr <. E ,  H >. ) ) )
1613, 153anbi23d 1255 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( A  Btwn  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  <->  ( A  Btwn  <. B ,  C >.  /\  <. B ,  <. A ,  C >. >.Cgr3 <. F ,  <. E ,  G >. >.  /\  ( <. B ,  D >.Cgr
<. F ,  H >.  /\ 
<. A ,  D >.Cgr <. E ,  H >. ) ) ) )
17 simp22 989 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N
) )
18 simp33 993 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  H  e.  ( EE `  N
) )
19 brofs2 24110 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  B  e.  ( EE
`  N )  /\  A  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. <. B ,  A >. ,  <. C ,  D >. >. 
OuterFiveSeg  <. <. F ,  E >. ,  <. G ,  H >. >. 
<->  ( A  Btwn  <. B ,  C >.  /\  <. B ,  <. A ,  C >. >.Cgr3 <. F ,  <. E ,  G >. >.  /\  ( <. B ,  D >.Cgr <. F ,  H >.  /\  <. A ,  D >.Cgr <. E ,  H >. ) ) ) )
203, 5, 4, 6, 17, 10, 9, 11, 18, 19syl333anc 1214 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. <. B ,  A >. ,  <. C ,  D >. >. 
OuterFiveSeg  <. <. F ,  E >. ,  <. G ,  H >. >. 
<->  ( A  Btwn  <. B ,  C >.  /\  <. B ,  <. A ,  C >. >.Cgr3 <. F ,  <. E ,  G >. >.  /\  ( <. B ,  D >.Cgr <. F ,  H >.  /\  <. A ,  D >.Cgr <. E ,  H >. ) ) ) )
2116, 20bitr4d 247 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( A  Btwn  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  <->  <. <. B ,  A >. ,  <. C ,  D >. >. 
OuterFiveSeg  <. <. F ,  E >. ,  <. G ,  H >. >. ) )
22 necom 2528 . . . . . . . . . . 11  |-  ( A  =/=  B  <->  B  =/=  A )
2322a1i 10 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( A  =/=  B  <->  B  =/=  A ) )
2421, 23anbi12d 691 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( ( A  Btwn  <. B ,  C >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. ) )  /\  A  =/= 
B )  <->  ( <. <. B ,  A >. , 
<. C ,  D >. >.  OuterFiveSeg  <. <. F ,  E >. , 
<. G ,  H >. >.  /\  B  =/=  A
) ) )
25 5segofs 24039 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  B  e.  ( EE
`  N )  /\  A  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. <. B ,  A >. ,  <. C ,  D >. >. 
OuterFiveSeg  <. <. F ,  E >. ,  <. G ,  H >. >.  /\  B  =/=  A )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
263, 5, 4, 6, 17, 10, 9, 11, 18, 25syl333anc 1214 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. <. B ,  A >. ,  <. C ,  D >. >. 
OuterFiveSeg  <. <. F ,  E >. ,  <. G ,  H >. >.  /\  B  =/=  A )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
2724, 26sylbid 206 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( ( A  Btwn  <. B ,  C >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. ) )  /\  A  =/= 
B )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
2827exp3a 425 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( A  Btwn  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  ->  ( A  =/=  B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) )
29283expd 1168 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( A  Btwn  <. B ,  C >.  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  ->  ( ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. )  ->  ( A  =/= 
B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) ) ) )
30 btwncom 24047 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. C ,  A >. 
<->  B  Btwn  <. A ,  C >. ) )
313, 5, 6, 4, 30syl13anc 1184 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( B  Btwn  <. C ,  A >.  <-> 
B  Btwn  <. A ,  C >. ) )
32313anbi1d 1256 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. C ,  A >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  <->  ( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr
<. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. ) ) ) )
33 brofs2 24110 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. <. A ,  B >. ,  <. C ,  D >. >. 
OuterFiveSeg  <. <. E ,  F >. ,  <. G ,  H >. >. 
<->  ( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) ) ) )
3432, 33bitr4d 247 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. C ,  A >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  <->  <. <. A ,  B >. ,  <. C ,  D >. >. 
OuterFiveSeg  <. <. E ,  F >. ,  <. G ,  H >. >. ) )
3534anbi1d 685 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( ( B  Btwn  <. C ,  A >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. ) )  /\  A  =/= 
B )  <->  ( <. <. A ,  B >. , 
<. C ,  D >. >.  OuterFiveSeg  <. <. E ,  F >. , 
<. G ,  H >. >.  /\  A  =/=  B
) ) )
36 5segofs 24039 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. <. A ,  B >. ,  <. C ,  D >. >. 
OuterFiveSeg  <. <. E ,  F >. ,  <. G ,  H >. >.  /\  A  =/=  B )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
3735, 36sylbid 206 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( ( B  Btwn  <. C ,  A >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. ) )  /\  A  =/= 
B )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
3837exp3a 425 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. C ,  A >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  ->  ( A  =/=  B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) )
39383expd 1168 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( B  Btwn  <. C ,  A >.  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  ->  ( ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. )  ->  ( A  =/= 
B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) ) ) )
40 cgr3permute1 24081 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N
)  /\  G  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  <->  <. A ,  <. C ,  B >. >.Cgr3 <. E ,  <. G ,  F >. >. ) )
413, 4, 5, 6, 9, 10, 11, 40syl133anc 1205 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  <->  <. A ,  <. C ,  B >. >.Cgr3 <. E ,  <. G ,  F >. >. ) )
42413anbi2d 1257 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( C  Btwn  <. A ,  B >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  <->  ( C  Btwn  <. A ,  B >.  /\  <. A ,  <. C ,  B >. >.Cgr3 <. E ,  <. G ,  F >. >.  /\  ( <. A ,  D >.Cgr
<. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. ) ) ) )
43 brifs2 24111 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  C  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( G  e.  ( EE `  N )  /\  F  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. <. A ,  C >. ,  <. B ,  D >. >. 
InnerFiveSeg  <. <. E ,  G >. ,  <. F ,  H >. >. 
<->  ( C  Btwn  <. A ,  B >.  /\  <. A ,  <. C ,  B >. >.Cgr3 <. E ,  <. G ,  F >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) ) ) )
443, 4, 6, 5, 17, 9, 11, 10, 18, 43syl333anc 1214 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. <. A ,  C >. ,  <. B ,  D >. >. 
InnerFiveSeg  <. <. E ,  G >. ,  <. F ,  H >. >. 
<->  ( C  Btwn  <. A ,  B >.  /\  <. A ,  <. C ,  B >. >.Cgr3 <. E ,  <. G ,  F >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) ) ) )
4542, 44bitr4d 247 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( C  Btwn  <. A ,  B >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  <->  <. <. A ,  C >. ,  <. B ,  D >. >. 
InnerFiveSeg  <. <. E ,  G >. ,  <. F ,  H >. >. ) )
46 ifscgr 24077 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  C  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( G  e.  ( EE `  N )  /\  F  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. <. A ,  C >. ,  <. B ,  D >. >. 
InnerFiveSeg  <. <. E ,  G >. ,  <. F ,  H >. >.  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
473, 4, 6, 5, 17, 9, 11, 10, 18, 46syl333anc 1214 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. <. A ,  C >. ,  <. B ,  D >. >. 
InnerFiveSeg  <. <. E ,  G >. ,  <. F ,  H >. >.  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
4845, 47sylbid 206 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( C  Btwn  <. A ,  B >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
4948a1dd 42 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( C  Btwn  <. A ,  B >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  ->  ( A  =/=  B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) )
50493expd 1168 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( C  Btwn  <. A ,  B >.  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  ->  ( ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. )  ->  ( A  =/= 
B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) ) ) )
5129, 39, 503jaod 1246 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  ->  (
( <. A ,  D >.Cgr
<. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. )  ->  ( A  =/= 
B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) ) ) )
528, 51sylbid 206 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( A  Colinear  <. B ,  C >.  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  ->  ( ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. )  ->  ( A  =/= 
B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) ) ) )
53523impd 1165 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( A  Colinear  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr <. F ,  H >. ) )  ->  ( A  =/=  B  ->  <. C ,  D >.Cgr <. G ,  H >. ) ) )
5453imp3a 420 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( ( A  Colinear  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. E ,  <. F ,  G >. >.  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. ) )  /\  A  =/= 
B )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
552, 54sylbid 206 1  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. <. A ,  B >. ,  <. C ,  D >. >.  FiveSeg  <. <. E ,  F >. ,  <. G ,  H >. >.  /\  A  =/=  B )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    \/ w3o 933    /\ w3a 934    e. wcel 1685    =/= wne 2447   <.cop 3644   class class class wbr 4024   ` cfv 5221   NNcn 9742   EEcee 23926    Btwn cbtwn 23927  Cgrccgr 23928    OuterFiveSeg cofs 24015    InnerFiveSeg cifs 24068  Cgr3ccgr3 24069    Colinear ccolin 24070    FiveSeg cfs 24071
This theorem is referenced by:  linecgr  24114
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7338  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-er 6656  df-map 6770  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-sup 7190  df-oi 7221  df-card 7568  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-n0 9962  df-z 10021  df-uz 10227  df-rp 10351  df-ico 10658  df-icc 10659  df-fz 10779  df-fzo 10867  df-seq 11043  df-exp 11101  df-hash 11334  df-cj 11580  df-re 11581  df-im 11582  df-sqr 11716  df-abs 11717  df-clim 11958  df-sum 12155  df-ee 23929  df-btwn 23930  df-cgr 23931  df-ofs 24016  df-ifs 24072  df-cgr3 24073  df-colinear 24074  df-fs 24075
  Copyright terms: Public domain W3C validator