MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcllem Unicode version

Theorem fsumcllem 12199
Description: - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 3-Jun-2014.)
Hypotheses
Ref Expression
fsumcllem.1  |-  ( ph  ->  S  C_  CC )
fsumcllem.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
fsumcllem.3  |-  ( ph  ->  A  e.  Fin )
fsumcllem.4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  S )
fsumcllem.5  |-  ( ph  ->  0  e.  S )
Assertion
Ref Expression
fsumcllem  |-  ( ph  -> 
sum_ k  e.  A  B  e.  S )
Distinct variable groups:    x, k,
y, A    x, B, y    ph, k, x, y    S, k, x, y
Allowed substitution hint:    B( k)

Proof of Theorem fsumcllem
StepHypRef Expression
1 simpr 449 . . . . 5  |-  ( (
ph  /\  A  =  (/) )  ->  A  =  (/) )
21sumeq1d 12168 . . . 4  |-  ( (
ph  /\  A  =  (/) )  ->  sum_ k  e.  A  B  =  sum_ k  e.  (/)  B )
3 sum0 12188 . . . 4  |-  sum_ k  e.  (/)  B  =  0
42, 3syl6eq 2332 . . 3  |-  ( (
ph  /\  A  =  (/) )  ->  sum_ k  e.  A  B  =  0 )
5 fsumcllem.5 . . . 4  |-  ( ph  ->  0  e.  S )
65adantr 453 . . 3  |-  ( (
ph  /\  A  =  (/) )  ->  0  e.  S )
74, 6eqeltrd 2358 . 2  |-  ( (
ph  /\  A  =  (/) )  ->  sum_ k  e.  A  B  e.  S
)
8 fsumcllem.1 . . . 4  |-  ( ph  ->  S  C_  CC )
98adantr 453 . . 3  |-  ( (
ph  /\  A  =/=  (/) )  ->  S  C_  CC )
10 fsumcllem.2 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
1110adantlr 697 . . 3  |-  ( ( ( ph  /\  A  =/=  (/) )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x  +  y )  e.  S )
12 fsumcllem.3 . . . 4  |-  ( ph  ->  A  e.  Fin )
1312adantr 453 . . 3  |-  ( (
ph  /\  A  =/=  (/) )  ->  A  e.  Fin )
14 fsumcllem.4 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  S )
1514adantlr 697 . . 3  |-  ( ( ( ph  /\  A  =/=  (/) )  /\  k  e.  A )  ->  B  e.  S )
16 simpr 449 . . 3  |-  ( (
ph  /\  A  =/=  (/) )  ->  A  =/=  (/) )
179, 11, 13, 15, 16fsumcl2lem 12198 . 2  |-  ( (
ph  /\  A  =/=  (/) )  ->  sum_ k  e.  A  B  e.  S
)
187, 17pm2.61dane 2525 1  |-  ( ph  -> 
sum_ k  e.  A  B  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1624    e. wcel 1685    =/= wne 2447    C_ wss 3153   (/)c0 3456  (class class class)co 5819   Fincfn 6858   CCcc 8730   0cc0 8732    + caddc 8735   sum_csu 12152
This theorem is referenced by:  fsumcl  12200  fsumrecl  12201  fsumzcl  12202  fsumnn0cl  12203  fsumge0  12247  plymullem  19592  efnnfsumcl  20334  efchtdvds  20391  fsumcnsrcl  26770
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-oadd 6478  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-sup 7189  df-oi 7220  df-card 7567  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-n0 9961  df-z 10020  df-uz 10226  df-rp 10350  df-fz 10777  df-fzo 10865  df-seq 11041  df-exp 11099  df-hash 11332  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-clim 11956  df-sum 12153
  Copyright terms: Public domain W3C validator