MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumconst Unicode version

Theorem fsumconst 12460
Description: The sum of constant terms ( k is not free in  A). (Contributed by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
fsumconst  |-  ( ( A  e.  Fin  /\  B  e.  CC )  -> 
sum_ k  e.  A  B  =  ( ( # `
 A )  x.  B ) )
Distinct variable groups:    A, k    B, k

Proof of Theorem fsumconst
Dummy variables  f  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mul02 9137 . . . . 5  |-  ( B  e.  CC  ->  (
0  x.  B )  =  0 )
21adantl 452 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  ( 0  x.  B
)  =  0 )
32eqcomd 2371 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  0  =  ( 0  x.  B ) )
4 sumeq1 12370 . . . . 5  |-  ( A  =  (/)  ->  sum_ k  e.  A  B  =  sum_ k  e.  (/)  B )
5 sum0 12402 . . . . 5  |-  sum_ k  e.  (/)  B  =  0
64, 5syl6eq 2414 . . . 4  |-  ( A  =  (/)  ->  sum_ k  e.  A  B  = 
0 )
7 fveq2 5632 . . . . . 6  |-  ( A  =  (/)  ->  ( # `  A )  =  (
# `  (/) ) )
8 hash0 11533 . . . . . 6  |-  ( # `  (/) )  =  0
97, 8syl6eq 2414 . . . . 5  |-  ( A  =  (/)  ->  ( # `  A )  =  0 )
109oveq1d 5996 . . . 4  |-  ( A  =  (/)  ->  ( (
# `  A )  x.  B )  =  ( 0  x.  B ) )
116, 10eqeq12d 2380 . . 3  |-  ( A  =  (/)  ->  ( sum_ k  e.  A  B  =  ( ( # `  A )  x.  B
)  <->  0  =  ( 0  x.  B ) ) )
123, 11syl5ibrcom 213 . 2  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  ( A  =  (/)  -> 
sum_ k  e.  A  B  =  ( ( # `
 A )  x.  B ) ) )
13 eqidd 2367 . . . . . . 7  |-  ( k  =  ( f `  n )  ->  B  =  B )
14 simprl 732 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  ( ( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
( # `  A )  e.  NN )
15 simprr 733 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  ( ( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
16 simpllr 735 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  k  e.  A )  ->  B  e.  CC )
17 simplr 731 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  ( ( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  ->  B  e.  CC )
18 elfznn 10972 . . . . . . . 8  |-  ( n  e.  ( 1 ... ( # `  A
) )  ->  n  e.  NN )
19 fvconst2g 5845 . . . . . . . 8  |-  ( ( B  e.  CC  /\  n  e.  NN )  ->  ( ( NN  X.  { B } ) `  n )  =  B )
2017, 18, 19syl2an 463 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( NN  X.  { B } ) `  n )  =  B )
2113, 14, 15, 16, 20fsum 12401 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  ( ( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  ->  sum_ k  e.  A  B  =  (  seq  1
(  +  ,  ( NN  X.  { B } ) ) `  ( # `  A ) ) )
22 ser1const 11266 . . . . . . 7  |-  ( ( B  e.  CC  /\  ( # `  A )  e.  NN )  -> 
(  seq  1 (  +  ,  ( NN 
X.  { B }
) ) `  ( # `
 A ) )  =  ( ( # `  A )  x.  B
) )
2322ad2ant2lr 728 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  ( ( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
(  seq  1 (  +  ,  ( NN 
X.  { B }
) ) `  ( # `
 A ) )  =  ( ( # `  A )  x.  B
) )
2421, 23eqtrd 2398 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  ( ( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  ->  sum_ k  e.  A  B  =  ( ( # `  A )  x.  B
) )
2524expr 598 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  ( # `  A
)  e.  NN )  ->  ( f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  ->  sum_ k  e.  A  B  =  ( ( # `
 A )  x.  B ) ) )
2625exlimdv 1641 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  ( # `  A
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  sum_ k  e.  A  B  =  ( ( # `  A
)  x.  B ) ) )
2726expimpd 586 . 2  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  ( ( ( # `  A )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A )  ->  sum_ k  e.  A  B  =  ( ( # `  A
)  x.  B ) ) )
28 fz1f1o 12391 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( # `  A )  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
2928adantr 451 . 2  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  ( A  =  (/)  \/  ( ( # `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
3012, 27, 29mpjaod 370 1  |-  ( ( A  e.  Fin  /\  B  e.  CC )  -> 
sum_ k  e.  A  B  =  ( ( # `
 A )  x.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358   E.wex 1546    = wceq 1647    e. wcel 1715   (/)c0 3543   {csn 3729    X. cxp 4790   -1-1-onto->wf1o 5357   ` cfv 5358  (class class class)co 5981   Fincfn 7006   CCcc 8882   0cc0 8884   1c1 8885    + caddc 8887    x. cmul 8889   NNcn 9893   ...cfz 10935    seq cseq 11210   #chash 11505   sum_csu 12366
This theorem is referenced by:  o1fsum  12479  hashiun  12488  climcndslem1  12516  climcndslem2  12517  harmonic  12525  mertenslem1  12548  sumhash  13152  lagsubg2  14888  sylow2a  15140  lebnumlem3  18676  uniioombllem4  19156  birthdaylem2  20469  basellem8  20548  0sgm  20605  musum  20654  chtleppi  20672  vmasum  20678  logfac2  20679  chpval2  20680  chpchtsum  20681  chpub  20682  logfaclbnd  20684  dchrsum2  20730  sumdchr2  20732  lgsquadlem1  20816  chebbnd1lem1  20841  chtppilimlem1  20845  dchrmusum2  20866  dchrisum0flblem1  20880  rpvmasum2  20884  dchrisum0lem2a  20889  mudivsum  20902  mulogsumlem  20903  selberglem2  20918  pntlemj  20975  rrndstprj2  26146  stoweidlem11  27351  stoweidlem26  27366  stoweidlem38  27378  stoweidlem44  27384
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-inf2 7489  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961  ax-pre-sup 8962
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-se 4456  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-isom 5367  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-oadd 6625  df-er 6802  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-sup 7341  df-oi 7372  df-card 7719  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-div 9571  df-nn 9894  df-2 9951  df-3 9952  df-n0 10115  df-z 10176  df-uz 10382  df-rp 10506  df-fz 10936  df-fzo 11026  df-seq 11211  df-exp 11270  df-hash 11506  df-cj 11791  df-re 11792  df-im 11793  df-sqr 11927  df-abs 11928  df-clim 12169  df-sum 12367
  Copyright terms: Public domain W3C validator