MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumconst Unicode version

Theorem fsumconst 12254
Description: The sum of constant terms ( k is not free in  A). (Contributed by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
fsumconst  |-  ( ( A  e.  Fin  /\  B  e.  CC )  -> 
sum_ k  e.  A  B  =  ( ( # `
 A )  x.  B ) )
Distinct variable groups:    A, k    B, k

Proof of Theorem fsumconst
Dummy variables  f  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mul02 8992 . . . . 5  |-  ( B  e.  CC  ->  (
0  x.  B )  =  0 )
21adantl 452 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  ( 0  x.  B
)  =  0 )
32eqcomd 2290 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  0  =  ( 0  x.  B ) )
4 sumeq1 12164 . . . . 5  |-  ( A  =  (/)  ->  sum_ k  e.  A  B  =  sum_ k  e.  (/)  B )
5 sum0 12196 . . . . 5  |-  sum_ k  e.  (/)  B  =  0
64, 5syl6eq 2333 . . . 4  |-  ( A  =  (/)  ->  sum_ k  e.  A  B  = 
0 )
7 fveq2 5527 . . . . . 6  |-  ( A  =  (/)  ->  ( # `  A )  =  (
# `  (/) ) )
8 hash0 11357 . . . . . 6  |-  ( # `  (/) )  =  0
97, 8syl6eq 2333 . . . . 5  |-  ( A  =  (/)  ->  ( # `  A )  =  0 )
109oveq1d 5875 . . . 4  |-  ( A  =  (/)  ->  ( (
# `  A )  x.  B )  =  ( 0  x.  B ) )
116, 10eqeq12d 2299 . . 3  |-  ( A  =  (/)  ->  ( sum_ k  e.  A  B  =  ( ( # `  A )  x.  B
)  <->  0  =  ( 0  x.  B ) ) )
123, 11syl5ibrcom 213 . 2  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  ( A  =  (/)  -> 
sum_ k  e.  A  B  =  ( ( # `
 A )  x.  B ) ) )
13 eqidd 2286 . . . . . . 7  |-  ( k  =  ( f `  n )  ->  B  =  B )
14 simprl 732 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  ( ( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
( # `  A )  e.  NN )
15 simprr 733 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  ( ( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
16 simpllr 735 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  k  e.  A )  ->  B  e.  CC )
17 simplr 731 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  ( ( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  ->  B  e.  CC )
18 elfznn 10821 . . . . . . . 8  |-  ( n  e.  ( 1 ... ( # `  A
) )  ->  n  e.  NN )
19 fvconst2g 5729 . . . . . . . 8  |-  ( ( B  e.  CC  /\  n  e.  NN )  ->  ( ( NN  X.  { B } ) `  n )  =  B )
2017, 18, 19syl2an 463 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( NN  X.  { B } ) `  n )  =  B )
2113, 14, 15, 16, 20fsum 12195 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  ( ( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  ->  sum_ k  e.  A  B  =  (  seq  1
(  +  ,  ( NN  X.  { B } ) ) `  ( # `  A ) ) )
22 ser1const 11104 . . . . . . 7  |-  ( ( B  e.  CC  /\  ( # `  A )  e.  NN )  -> 
(  seq  1 (  +  ,  ( NN 
X.  { B }
) ) `  ( # `
 A ) )  =  ( ( # `  A )  x.  B
) )
2322ad2ant2lr 728 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  ( ( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
(  seq  1 (  +  ,  ( NN 
X.  { B }
) ) `  ( # `
 A ) )  =  ( ( # `  A )  x.  B
) )
2421, 23eqtrd 2317 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  ( ( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  ->  sum_ k  e.  A  B  =  ( ( # `  A )  x.  B
) )
2524expr 598 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  ( # `  A
)  e.  NN )  ->  ( f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  ->  sum_ k  e.  A  B  =  ( ( # `
 A )  x.  B ) ) )
2625exlimdv 1666 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  ( # `  A
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  sum_ k  e.  A  B  =  ( ( # `  A
)  x.  B ) ) )
2726expimpd 586 . 2  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  ( ( ( # `  A )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A )  ->  sum_ k  e.  A  B  =  ( ( # `  A
)  x.  B ) ) )
28 fz1f1o 12185 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( # `  A )  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
2928adantr 451 . 2  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  ( A  =  (/)  \/  ( ( # `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
3012, 27, 29mpjaod 370 1  |-  ( ( A  e.  Fin  /\  B  e.  CC )  -> 
sum_ k  e.  A  B  =  ( ( # `
 A )  x.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358   E.wex 1530    = wceq 1625    e. wcel 1686   (/)c0 3457   {csn 3642    X. cxp 4689   -1-1-onto->wf1o 5256   ` cfv 5257  (class class class)co 5860   Fincfn 6865   CCcc 8737   0cc0 8739   1c1 8740    + caddc 8742    x. cmul 8744   NNcn 9748   ...cfz 10784    seq cseq 11048   #chash 11339   sum_csu 12160
This theorem is referenced by:  o1fsum  12273  hashiun  12282  climcndslem1  12310  climcndslem2  12311  harmonic  12319  mertenslem1  12342  sumhash  12946  lagsubg2  14680  sylow2a  14932  lebnumlem3  18463  uniioombllem4  18943  birthdaylem2  20249  basellem8  20327  0sgm  20384  musum  20433  chtleppi  20451  vmasum  20457  logfac2  20458  chpval2  20459  chpchtsum  20460  chpub  20461  logfaclbnd  20463  dchrsum2  20509  sumdchr2  20511  lgsquadlem1  20595  chebbnd1lem1  20620  chtppilimlem1  20624  dchrmusum2  20645  dchrisum0flblem1  20659  rpvmasum2  20663  dchrisum0lem2a  20668  mudivsum  20681  mulogsumlem  20682  selberglem2  20697  pntlemj  20754  rrndstprj2  26566  stoweidlem11  27771  stoweidlem26  27786  stoweidlem38  27798  stoweidlem44  27804
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-oadd 6485  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-sup 7196  df-oi 7227  df-card 7574  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-n0 9968  df-z 10027  df-uz 10233  df-rp 10357  df-fz 10785  df-fzo 10873  df-seq 11049  df-exp 11107  df-hash 11340  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-clim 11964  df-sum 12161
  Copyright terms: Public domain W3C validator