MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumconst Unicode version

Theorem fsumconst 12561
Description: The sum of constant terms ( k is not free in  A). (Contributed by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
fsumconst  |-  ( ( A  e.  Fin  /\  B  e.  CC )  -> 
sum_ k  e.  A  B  =  ( ( # `
 A )  x.  B ) )
Distinct variable groups:    A, k    B, k

Proof of Theorem fsumconst
Dummy variables  f  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mul02 9233 . . . . 5  |-  ( B  e.  CC  ->  (
0  x.  B )  =  0 )
21adantl 453 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  ( 0  x.  B
)  =  0 )
32eqcomd 2440 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  0  =  ( 0  x.  B ) )
4 sumeq1 12471 . . . . 5  |-  ( A  =  (/)  ->  sum_ k  e.  A  B  =  sum_ k  e.  (/)  B )
5 sum0 12503 . . . . 5  |-  sum_ k  e.  (/)  B  =  0
64, 5syl6eq 2483 . . . 4  |-  ( A  =  (/)  ->  sum_ k  e.  A  B  = 
0 )
7 fveq2 5719 . . . . . 6  |-  ( A  =  (/)  ->  ( # `  A )  =  (
# `  (/) ) )
8 hash0 11634 . . . . . 6  |-  ( # `  (/) )  =  0
97, 8syl6eq 2483 . . . . 5  |-  ( A  =  (/)  ->  ( # `  A )  =  0 )
109oveq1d 6087 . . . 4  |-  ( A  =  (/)  ->  ( (
# `  A )  x.  B )  =  ( 0  x.  B ) )
116, 10eqeq12d 2449 . . 3  |-  ( A  =  (/)  ->  ( sum_ k  e.  A  B  =  ( ( # `  A )  x.  B
)  <->  0  =  ( 0  x.  B ) ) )
123, 11syl5ibrcom 214 . 2  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  ( A  =  (/)  -> 
sum_ k  e.  A  B  =  ( ( # `
 A )  x.  B ) ) )
13 eqidd 2436 . . . . . . 7  |-  ( k  =  ( f `  n )  ->  B  =  B )
14 simprl 733 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  ( ( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
( # `  A )  e.  NN )
15 simprr 734 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  ( ( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
16 simpllr 736 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  k  e.  A )  ->  B  e.  CC )
17 simplr 732 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  ( ( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  ->  B  e.  CC )
18 elfznn 11069 . . . . . . . 8  |-  ( n  e.  ( 1 ... ( # `  A
) )  ->  n  e.  NN )
19 fvconst2g 5936 . . . . . . . 8  |-  ( ( B  e.  CC  /\  n  e.  NN )  ->  ( ( NN  X.  { B } ) `  n )  =  B )
2017, 18, 19syl2an 464 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( NN  X.  { B } ) `  n )  =  B )
2113, 14, 15, 16, 20fsum 12502 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  ( ( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  ->  sum_ k  e.  A  B  =  (  seq  1
(  +  ,  ( NN  X.  { B } ) ) `  ( # `  A ) ) )
22 ser1const 11367 . . . . . . 7  |-  ( ( B  e.  CC  /\  ( # `  A )  e.  NN )  -> 
(  seq  1 (  +  ,  ( NN 
X.  { B }
) ) `  ( # `
 A ) )  =  ( ( # `  A )  x.  B
) )
2322ad2ant2lr 729 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  ( ( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
(  seq  1 (  +  ,  ( NN 
X.  { B }
) ) `  ( # `
 A ) )  =  ( ( # `  A )  x.  B
) )
2421, 23eqtrd 2467 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  ( ( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  ->  sum_ k  e.  A  B  =  ( ( # `  A )  x.  B
) )
2524expr 599 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  ( # `  A
)  e.  NN )  ->  ( f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  ->  sum_ k  e.  A  B  =  ( ( # `
 A )  x.  B ) ) )
2625exlimdv 1646 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  ( # `  A
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  sum_ k  e.  A  B  =  ( ( # `  A
)  x.  B ) ) )
2726expimpd 587 . 2  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  ( ( ( # `  A )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A )  ->  sum_ k  e.  A  B  =  ( ( # `  A
)  x.  B ) ) )
28 fz1f1o 12492 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( # `  A )  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
2928adantr 452 . 2  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  ( A  =  (/)  \/  ( ( # `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
3012, 27, 29mpjaod 371 1  |-  ( ( A  e.  Fin  /\  B  e.  CC )  -> 
sum_ k  e.  A  B  =  ( ( # `
 A )  x.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   (/)c0 3620   {csn 3806    X. cxp 4867   -1-1-onto->wf1o 5444   ` cfv 5445  (class class class)co 6072   Fincfn 7100   CCcc 8977   0cc0 8979   1c1 8980    + caddc 8982    x. cmul 8984   NNcn 9989   ...cfz 11032    seq cseq 11311   #chash 11606   sum_csu 12467
This theorem is referenced by:  o1fsum  12580  hashiun  12589  climcndslem1  12617  climcndslem2  12618  harmonic  12626  mertenslem1  12649  sumhash  13253  lagsubg2  14989  sylow2a  15241  lebnumlem3  18976  uniioombllem4  19466  birthdaylem2  20779  basellem8  20858  0sgm  20915  musum  20964  chtleppi  20982  vmasum  20988  logfac2  20989  chpval2  20990  chpchtsum  20991  chpub  20992  logfaclbnd  20994  dchrsum2  21040  sumdchr2  21042  lgsquadlem1  21126  chebbnd1lem1  21151  chtppilimlem1  21155  dchrmusum2  21176  dchrisum0flblem1  21190  rpvmasum2  21194  dchrisum0lem2a  21199  mudivsum  21212  mulogsumlem  21213  selberglem2  21228  pntlemj  21285  rrndstprj2  26477  stoweidlem11  27674  stoweidlem26  27689  stoweidlem38  27701  shwrdssizensame  28174  frghash2spot  28310  usgreghash2spotv  28313  usgreghash2spot  28316
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056  ax-pre-sup 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-oadd 6719  df-er 6896  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-sup 7437  df-oi 7468  df-card 7815  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-2 10047  df-3 10048  df-n0 10211  df-z 10272  df-uz 10478  df-rp 10602  df-fz 11033  df-fzo 11124  df-seq 11312  df-exp 11371  df-hash 11607  df-cj 11892  df-re 11893  df-im 11894  df-sqr 12028  df-abs 12029  df-clim 12270  df-sum 12468
  Copyright terms: Public domain W3C validator